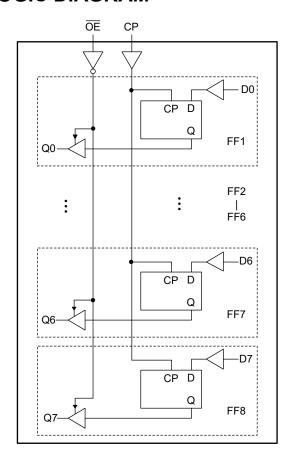
Octal D-Type Positive Edge-Triggered Flip-Flop with 3-State Outputs

GENERAL DESCRIPTION

The 74HC574 is an octal D-Type positive edge-triggered flip-flop with 3-state outputs. The device can accept a wide supply voltage range from 2.0V to 5.5V.

 \overline{OE} is output enable input and CP is clock input. When \overline{OE} sets high, the outputs are in a high-impedance state. \overline{OE} does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.


FEATURES

Wide Supply Voltage Range: 2.0V to 5.5V

74HC574

- +7.8mA/-7.8mA Output Current
- 8-Bit Positive Edge-Triggered Register
- 3-State Non-Inverting Outputs Suitable for Bus-Oriented Applications
- CMOS Low Power Consumption
- -40°C to +125°C Operating Temperature Range
- Available in Green TSSOP-20 and SOIC-20 Packages

LOGIC DIAGRAM

FUNCTION TABLE

	INPUT		INTERNAL	OUTPUT
ŌĒ	СР	Dn	FLIP-FLOP	Qn
L	1	I	L	L
L	1	h	Н	Н
Н	1	I	L	Z
Н	1	h	Н	Z

H = High voltage level.

h = High voltage level one set-up time before clock rising edge ↑.

L = Low voltage level.

I = Low voltage level one set-up time before clock rising edge ↑.

Z = High-impedance state.

↑ = Low-to-high clock transition.

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
74HC574	TSSOP-20	-40°C to +125°C	74HC574XTS20G/TR	06GXTS20 XXXXX	Tape and Reel, 4000
7400374	SOIC-20	-40°C to +125°C	74HC574XS20G/TR	74HC574XS20 XXXXX	Tape and Reel, 1500

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS (1)

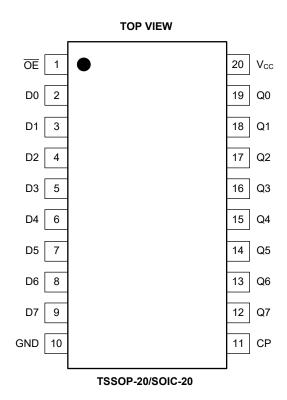
Supply Voltage, V _{CC} 0.5V to 7.0V
Input Voltage Range, $V_1^{(2)}$ 0.5V to MIN (7.0V, V_{CC} + 0.5V)
Output Voltage Range, $V_0^{(2)}$ -0.5V to MIN (7.0V, V_{CC} + 0.5V)
Input Clamping Current, I_{IK} ($V_I < 0V$ or $V_I > V_{CC}$)±20mA
Output Clamping Current, I_{OK} ($V_O < 0V$ or $V_O > V_{CC}$) ± 20 mA
Output Current, I _O (V _O = 0V to V _{CC})±35mA
Continuous Current (V _{CC} or GND)±70mA
Junction Temperature (3)+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM6000V
CDM1000V

RECOMMENDED OPERATING CONDITIONS

Supply Voltage, V _{CC}	2.0V to 5.5V
Input Voltage, V _I	
Output Voltage, Vo	
Input Transition Rise or Fall Rate, Δt/ΔV	
V _{CC} = 2.0V	1000ns/V (MAX)
V _{CC} = 4.5V	500ns/V (MAX)
V _{CC} = 5.5V	400ns/V (MAX)
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

- 1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.
- 2. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
- 3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	ŌĒ	Output Enable Input (Active Low).
2, 3, 4, 5, 6, 7, 8, 9	D0, D1, D2, D3, D4, D5, D6, D7	Data Inputs.
10	GND	Ground.
11	СР	Clock Input (Low-to-High Clock Transition, Edge-Triggered).
12, 13, 14, 15, 16, 17, 18, 19	Q7, Q6, Q5, Q4, Q3, Q2, Q1, Q0	Outputs.
20	V _{CC}	Supply Voltage.

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL		CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
High-Level Input Voltage		V _{CC} = 2.0V		Full	1.50			
	V_{IH}	V _{CC} = 4.5V	V _{CC} = 4.5V		3.15			V
		V _{CC} = 5.5V		Full	3.85			
		V _{CC} = 2.0V		Full			0.50	
Low-Level Input Voltage	V_{IL}	V _{CC} = 4.5V		Full			1.35	V
		V _{CC} = 5.5V		Full			1.65	
			$V_{CC} = 2.0V, I_{O} = -20\mu A$	Full	1.95	1.995		
	V _{OH}		$V_{CC} = 4.5V$, $I_{O} = -20\mu A$	Full	4.45	4.495		V
High-Level Output Voltage		$V_I = V_{IH}$	$V_{CC} = 5.5V$, $I_{O} = -20\mu A$	Full	5.45	5.495		
			V_{CC} = 4.5V, I_{O} = -6.0mA	Full	4.00	4.290		
			$V_{CC} = 5.5V$, $I_{O} = -7.8mA$	Full	4.95	5.260		
			$V_{CC} = 2.0V, I_{O} = 20\mu A$	Full		0.005	0.05	
			$V_{CC} = 4.5V$, $I_{O} = 20\mu A$	Full		0.005	0.05	
Low-Level Output Voltage	V_{OL}	$V_I = V_{IL}$	$V_{CC} = 5.5V$, $I_{O} = 20\mu A$	Full		0.005	0.05	V
			$V_{CC} = 4.5V, I_{O} = 6.0mA$	Full		0.170	0.40	
			V _{CC} = 5.5V, I _O = 7.8mA	Full		0.210	0.40	
Input Leakage Current	l ₁	V_{CC} = 5.5V, V_{I} = V_{CC} or GND		Full		±0.1	±1	μΑ
Off-State Output Current	l _{oz}	V_{CC} = 5.5V, V_I = V_{IH} or V_{IL} , V_O = V_{CC} or GND		Full		±0.1	±2	μA
Supply Current	Icc	V _{CC} = 5.5V, \	$V_1 = V_{CC}$ or GND, $I_0 = 0A$	Full		0.1	10	μA
Input Capacitance	Cı			+25°C		4		pF

DYNAMIC CHARACTERISTICS

(See Figure 1 for test circuit. Full = -40°C to +125°C, C_L = 50pF, all typical values are measured at and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	СО	NDITIONS	TEMP	MIN (1)	TYP	MAX (1)	UNITS
			V _{CC} = 2.0V	Full		39	100	
Propagation Delay (2)	t_{PD}	CP to Qn	V _{CC} = 4.5V	Full		13	35	ns
			V _{CC} = 5.5V	Full		11	30	
			V _{CC} = 2.0V	Full		38	100	
Enable Time (2)	$t_{\sf EN}$	OE to Qn	V _{CC} = 4.5V	Full		13	35	ns
			V _{CC} = 5.5V	Full		11	28	
			V _{CC} = 2.0V	Full		16	40	
Disable Time (2)	$t_{\sf DIS}$	OE to Qn	V _{CC} = 4.5V	Full		12	20	ns
			V _{CC} = 5.5V	Full		12	20	
	t _T	Qn	V _{CC} = 2.0V	Full		27	80	
Transition Time (2)			V _{CC} = 4.5V	Full		9	20	ns
			V _{CC} = 5.5V	Full		7	18	
	t _W	CP high or low	V _{CC} = 2.0V	Full	80			ns
Pulse Width			V _{CC} = 4.5V	Full	24			
			V _{CC} = 5.5V	Full	20			
			V _{CC} = 2.0V	Full	50			
Set-Up Time	t_{SU}	Dn to CP	V _{CC} = 4.5V	Full	18			ns
			V _{CC} = 5.5V	Full	18			
			V _{CC} = 2.0V	Full	5			
Hold Time	t _H	Dn to CP	V _{CC} = 4.5V	Full	5			ns
			V _{CC} = 5.5V	Full	5			
Maximum Frequency			V _{CC} = 2.0V	Full	4			
	f_{MAX}	СР	V _{CC} = 4.5V	Full	20			MHz
			V _{CC} = 5.5V	Full	24			1
Power Dissipation Capacitance (3)	C_{PD}	C _L = 50pF, f = 1N	MHz , $V_I = GND$ to V_{CC}	+25°C		7		pF

NOTES:

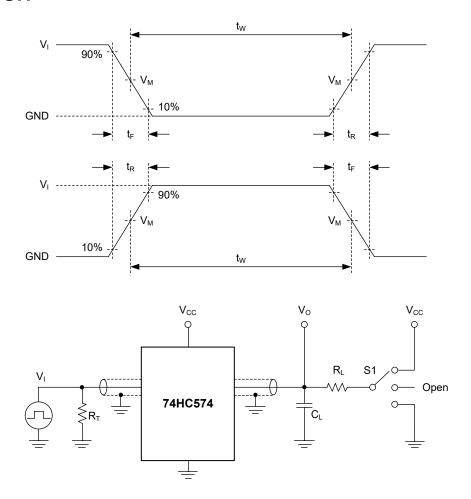
- 1. Specified by design and characterization, not production tested.
- 2. t_{PD} is the same as t_{PLL} and t_{PHL} . t_{DIS} is the same as t_{PLZ} and t_{PHZ} . t_{EN} is the same as t_{PZL} and t_{PZL} . t_{T} is the same as t_{THL} and t_{TLH} .
- 3. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

$$P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o})$$

where:

 f_i = Input frequency in MHz.

 f_o = Output frequency in MHz.


 C_L = Output load capacitance in pF.

 V_{CC} = Supply voltage in Volts.

N = Number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_o) = \text{Sum of the outputs.}$

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

R_L: Load resistance.

C_L: Load capacitance (includes jig and probe).

 R_T : Termination resistance (equals to output impedance Z_O of the pulse generator).

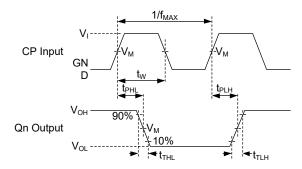
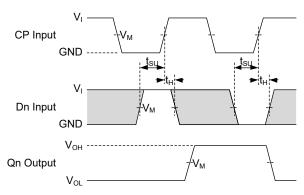

S1: Test selection switch.

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

SUPPLY VOLTAGE	INF	PUT	LO	AD	S1 POSITION			
V _{CC}	Vı	t _R , t _F	CL	R_L	t _{PLH} , t _{PHL}	t _{PHZ} , t _{PZH}		
2.0V to 5.5V	V _{CC}	≤ 6.0ns	50pF	1kΩ	Open	V _{CC}	GND	

WAVEFORMS

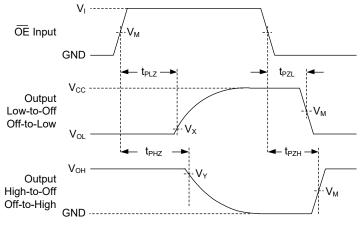


Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 2. Clock Input to Output Propagation Delays, Pulse Width, Transition Times and Maximum Clock Frequency


Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

The shaded areas refer to when the input is allowed to change for predictable output performance.

Figure 3. Data Set-Up Times for the Dn Input to the CP Input and Hold Times for the CP Input to the Dn Input

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 4. Enable and Disable Times

WAVEFORMS (continued)

Table 2. Measurement Points

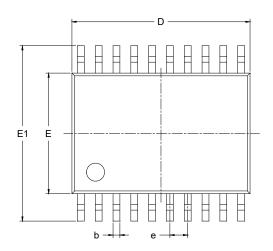
SUPPLY VOLTAGE	INPUT		OUTPUT				
Vcc	V _I V _M ⁽¹⁾		V _M	V _X	V _Y		
2.0V to 5.5V	V _{CC}	0.5 × V _{CC}	0.5 × V _{CC}	0.1 × V _{CC}	0.9 × V _{CC}		

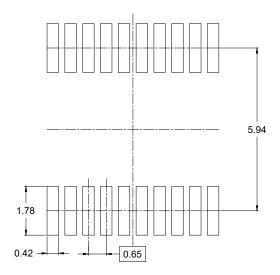
NOTE:

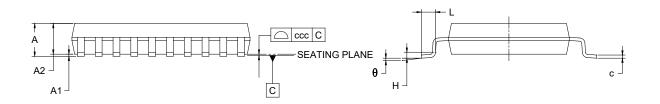
1. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 6.0ns.

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

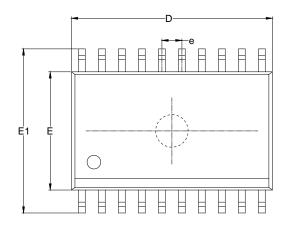

Changes from Original (JUNE 2023) to REV.A

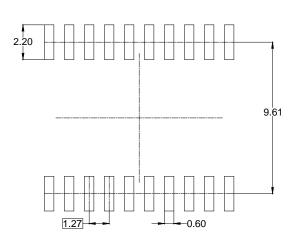

Page


PACKAGE OUTLINE DIMENSIONS

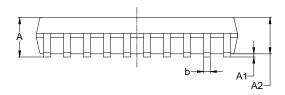
TSSOP-20

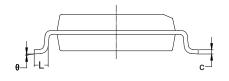
RECOMMENDED LAND PATTERN (Unit: mm)


Cumbal	Din	nensions In Millimet	ers
Symbol	MIN	MOD	MAX
Α	-	-	1.200
A1	0.050	-	0.150
A2	0.800	-	1.050
b	0.190	-	0.300
С	0.090	-	0.200
D	6.400	-	6.600
E	4.300	-	4.500
E1	6.200	-	6.600
е		0.650 BSC	
L	0.450	-	0.750
Н		0.250 TYP	
θ	0°	-	8°
ccc		0.100	

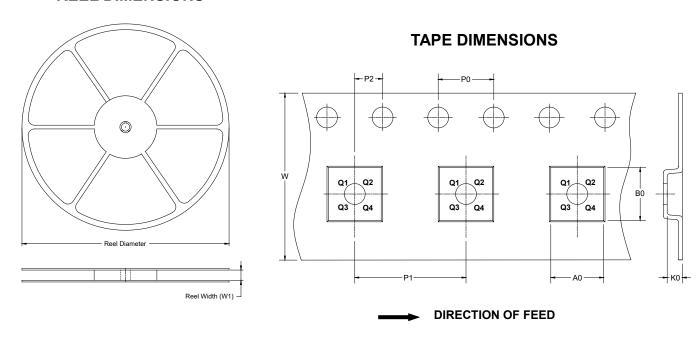

NOTES:

- 1. Body dimensions do not include mode flash or protrusion.
- This drawing is subject to change without notice.
 Reference JEDEC MO-153.




PACKAGE OUTLINE DIMENSIONS SOIC-20

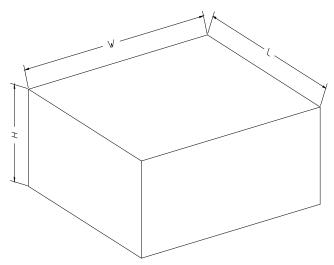
RECOMMENDED LAND PATTERN (Unit: mm)


Symbol	_	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
А	2.350	2.650	0.093	0.104	
A1	0.100	0.300	0.004	0.012	
A2	2.100	2.500	0.083	0.098	
b	0.330	0.510	0.013	0.020	
С	0.204	0.330	0.008	0.013	
D	12.520	13.000	0.493	0.512	
E	7.400	7.600	0.291	0.299	
E1	10.210	10.610	0.402	0.418	
е	1.27	BSC	0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

- Body dimensions do not include mode flash or protrusion.
 This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP-20	13"	16.4	6.80	6.90	1.50	4.0	8.0	2.0	16.0	Q1
SOIC-20	13"	24.4	10.90	13.30	3.00	4.0	12.0	2.0	24.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
13"	386	280	370	5