SGM4542 2-Bit Bidirectional Voltage-Level Translator for Open-Drain and Push-Pull Applications

GENERAL DESCRIPTION

The SGM4542 is a 2-bit, non-inverting, bidirectional voltage-level translator which features two independent configurable power-supply lines. The A and B ports track the V_{CCA} supply and V_{CCB} supply respectively. The supply voltage range is 0.9V to 3.6V for both A and B ports. The device provides a bidirectional translation function among the different voltage nodes (including 1.2V, 1.8V, 2.5V, and 3.6V).

The SGM4542 has an output enable (OE) function, which controls the inputs and outputs states. When OE goes low, all I/Os enter into the high-impedance state. It is beneficial to reduce quiescent current consumption.

The SGM4542 is available in a Green XTDFN-1.35×1-8L package. It operates over an ambient temperature range of -40°C to +125°C.

FEATURES

- Power Supply Voltage Range (V_{CCA} ≤ V_{CCB})
 A Ports and B Ports: 0.9V to 3.6V
- When V_{CCA} or V_{CCB} is Low, Device Enters Power-Down Mode
- Direction-Control Signal is Not Required
- No Specific Power Sequences Required for V_{CCA} and V_{CCB}
- Supports Power-Down Mode
- Available in a Green XTDFN-1.35×1-8L Package

APPLICATIONS

Universal Asynchronous Receiver/Transmitter I²C/SMBus Interfaces General Purpose I/O (GPIO)

Figure 1. Typical Application Circuit

TYPICAL APPLICATION

SGM4542

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM4542	XTDFN-1.35×1-8L	-40°C to +125°C	SGM4542XXET8G/TR	XSX	Tape and Reel, 5000

MARKING INFORMATION

NOTE: X = Date Code.

YY X Date Code - Quarter

Serial Number

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Range

V _{CCA}	0.5V to 4.6V
V _{ССВ}	0.5V to 4.6V
Input Voltage Range, Vı	
A Ports	0.5V to 4.6V
B Ports	0.5V to 4.6V
OE	0.5V to 4.6V
Output Voltage Range for the High-Imp	edance or Power-Off
State, V ₀	
A Ports	0.5V to 4.6V
B Ports	0.5V to 4.6V
Output Voltage Range for the High or L	ow State, V _O
A Ports	0.5V to V _{CCA} + 0.5V
B Ports	0.5V to V _{CCB} + 0.5V
Input Clamp Current, I_{IK} , $(V_I < 0)$	50mA
Output Clamp Current, I_{OK} , (V _O < 0)	50mA
Package Thermal Resistance	
XTDFN-1.35×1-8L, θ _{JA}	240°C/W
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	
CDM	

RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range-40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

SGM4542

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	B2	Channel 2 Input/Output B. It tracks the V _{CCB} supply.
2	GND	Ground.
3	V _{CCA}	Supply Voltage on A Port. It can be operated from 0.9V to 3.6V, and V _{CCA} is always \leq V _{CCB} .
4	A2	Channel 2 Input/Output A. It tracks the V _{CCA} supply.
5	A1	Channel 1 Input/Output A. It tracks the V _{CCA} supply.
6	OE	Output Enable Control Pin. Active high. When OE goes low, all outputs enter into the high-impedance state. It tracks the V_{CCA} supply.
7	V _{CCB}	Supply Voltage on B Port. It can be operated from 0.9V to 3.6V.
8	B1	Channel 1 Input/Output B. It tracks the V _{CCB} supply.

FUNCTIONAL DESCRIPTION

Table 1. Functional Table

V _{CCA} ⁽¹⁾	V _{CCB} ⁽¹⁾	OE ⁽³⁾	An	Bn
1.08V to 1.98V	1.08V to 1.98V	L	Z ⁽²⁾	Z
1.08V to 1.98V	1.08V to 1.98V	H ⁽²⁾	Input/Output	Output/Input

NOTES:

1. No specific power sequence is required for V_{CCA} and V_{CCB}. V_{CCA} is always \leq V_{CCB}.

2. H = high voltage level, L = low voltage level, X = don't care, Z = high impedance state.

3. OE can withstand voltage up to V_{CCB} , but its V_{IL} and V_{IH} are referenced to V_{CCA} .

Table 2. Truth Table when OE = H

Input	Output
Transition Rising Edge	Follow Input Signal
Н	H (Once it reaches the steady-state high, it can respond to signal driven in the opposite direction)
Transition Falling Edge	Follow Input Signal
L	L (Once it reaches the steady-state low, it can respond to signal driven in the opposite direction)

ELECTRICAL CHARACTERISTICS

(V_{CCA} = 1.08V to 3.6V, V_{CCB} = 1.08V to 3.6V, Full = -40°C to +125°C, typical values are at T_A = +25°C, unless otherwise noted.)

PARAMETER		SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
Recommended Operating	Conditions	•							
2 1 1 1 1		V _{CCA}		Full	1.08		3.6	V	
Supply voltage		V _{CCB}		Full	1.08		3.6	v	
	A Port I/Os			Full	$0.7 \times V_{CCA}$				
High-Level Input Voltage	B Port I/Os	VIH		Full	$0.7 \times V_{CCB}$			V	
	OE Input			Full	$0.7 \times V_{CCA}$				
	A Port I/Os			Full			0.25		
Low-Level Input Voltage	B Port I/Os	VIL		Full			0.25	V	
	OE Input			Full			$0.3 \times V_{CCA}$		
Hysteresis Voltage	OE Input	V _{HYS}		Full	0.03		0.3	V	
Electrical Characteristics									
A Ports High-Level Output Voltage		V _{OHA}	I _{он} = -20µА	Full	$0.7 \times V_{CCA}$			V	
A Ports Low-Level Output Vo	oltage	V _{OLA}	I_{OL} = 1mA, $V_{IB} \le 0.25V$	Full			0.4	V	
B Ports High-Level Output V	oltage	V _{OHB}	I _{OH} = -20µА	Full	$0.7 \times V_{CCB}$			V	
B Ports Low-Level Output Vo	oltage	V _{OLB}	I_{OL} = 1mA, $V_{IA} \le 0.25V$	Full			0.4	V	
Input Leakage Current	OE Input	I _I		Full			±4	μA	
Power Off Lookage Current	A Ports	1	$V_{CCA} = 0V, V_{CCB} = 0V \text{ to } 3.6V$	Full			±10		
Power-On Leakage Current	B Ports	IOFF	$V_{CCA} = 0V$ to 3.6V, $V_{CCB} = 0V$	Full			±10	μΑ	
Off-State Output Leakage	A or B Ports	l _{oz}	OE = 0V	Full			±8	μA	
Quiescent Supply Current		I _{CCA} + I _{CCB}	$V_{CCA} = 1.08V \text{ to } V_{CCB},$ $V_{CCB} = 1.08V \text{ to } 3.6V,$ $V_{i} = 0V \text{ or } V_{CCI}^{(2)}, I_{O} = 0A$	Full			50	μA	
OE Input Capacitance		Cı		+25°C		10		pF	
	A Danta		Enabled	+25°C		18			
	A Ports		Disabled	+25°C		15		_	
	D Dort-	CIO	Enabled	+25℃		18		р⊢	
	B Ports		Disabled	+25°C		15			

NOTES:

1. Ensure that $V_{CCA} \leq V_{CCB}$.

2. V_{CCI} is the supply voltage associated with the input ports.

SWITCHING CHARACTERISTICS

(V_{CCA} = 1.08V to 3.6V, V_{CCB} = 1.08V to 3.6V, Full = -40°C to +125°C, typical values are at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
Propagation Delay	t _{PD}	An to Bn, or Bn to An, push-pull driving	Full			22	ns
Rise Time	t _R	An or Bn, push-pull driving		1		26.5	ns
Fall Time	t _F	An or Bn, push-pull driving	Full	1		26.5	ns
Enable Time	t _{EN}	OE to An or Bn				285	ns
Disable Time t _{DIS} C		OE to An or Bn	Full			100	ns
Channel-to-Channel Skew t _{SKO} F		Push-pull driving	Full	0		5	ns

WAVEFORMS

Figure 2. Propagation Delay (Data Input to Data Output)

Figure 3. Rise Time and Fall Time of Data Output

NOTE:

1. Waveform A indicates an output that is high except for OE is high. Waveform B indicates an output that is low except for OE is high.

Figure 4. Enable and Disable Times

SGM4542

TEST CIRCUIT

Test conditions are given in Table 3.

Definitions for test circuit:

R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

V_{EXT} = External voltage for measuring switching times.

Figure 5. Test Circuit for Measuring Switching Times

Table 3. Test Conditions

Supply Voltage		Input		Load		V _{EXT}		
VCCA	V _{CCB}	VI	Δt/ΔV	CL	R _L ⁽²⁾	t _{PLH} , t _{PHL} ⁽³⁾	t _{PLZ} , t _{PZL} ⁽⁴⁾⁽⁵⁾	t _{PHZ} , t _{PZH} ⁽⁴⁾⁽⁵⁾
1.08V to 3.6V	1.08V to 3.6V	V _{CCI} ⁽¹⁾	≤ 2ns/V	15pF	50kΩ, 1MΩ	Open	$2 \times V_{CCO}^{(1)}$	Open

NOTES:

1. V_{CCI} is the supply voltage associated with the input, and V_{CCO} is the supply voltage associated with the output.

2. For measuring propagation delay and output rise and fall measurements, $R_L = 1M\Omega$. For measuring enable and disable times, $R_L = 50k\Omega$.

3. t_{PLH} and t_{PHL} are the same as $t_{\mathsf{PD}}.$

4. t_{PLZ} and t_{PHZ} are the same as t_{DIS} .

5. t_{PZL} and t_{PZH} are the same as t_{EN} .

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

MAY 2023 – REV.A to REV.A.1	Page
Updated Features section	
Updated Functional Description section	4
Changes from Original (DECEMBER 2021) to REV.A	Page
Changed from product preview to production data	All

PACKAGE OUTLINE DIMENSIONS

XTDFN-1.35×1-8L

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions In Millimeters							
	MIN	MOD	MAX					
A	-	0.310	0.330					
A1	0.000	-	0.050					
A2	0.100 REF							
D	1.250 1.350		1.450					
E	0.900	0.900 1.000						
b	0.110	0.160	0.210					
е		0.350 BSC						
L	0.250	0.300	0.350					
L1	0.300	0.350	0.400					
L2		0.075 REF						
eee	- 0.050 -							

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
XTDFN-1.35×1-8L	7″	9.5	1.21	1.51	0.39	4.0	4.0	2.0	8.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	

