

GENERAL DESCRIPTION

The 74AVC4T774 is a 4-bit, dual-supply voltage level transceiver with 3-state outputs and bidirectional level translation. The An and Bn are four data input-output ports. DIRn are the direction control inputs and \overline{OE} is the output enable input. V_{CCA} and V_{CCB} are the supply pins. The supply voltage of V_{CCA} and V_{CCB} can range from 0.8V to 3.6V, making the device suitable for bidirectional translating among any of the 0.8V, 1.2V, 1.5V, 1.8V, 2.5V and 3.3V low voltage nodes. The An, DIRn and \overline{OE} signals are referenced to V_{CCB} .

When DIRn is set high, it allows transmission from An to Bn. When DIRn is set low, it allows transmission from Bn to An. $\overline{\text{OE}}$ can make the outputs disabled in order to effectively isolate the buses. In suspend mode, both An and Bn are in high-impedance state when either V_{CCA} or V_{CCB} is at GND level.

This device is highly suitable for partial power-down applications by using power-off leakage current (I_{OFF}) circuit. When the device is powered down, the outputs are disabled, and the current backflow can be prevented from passing through the device.

The 74AVC4T774 is available in Green TSSOP-16, UTQFN-2.6×1.8-16L and TQFN-3.5×4-16L packages. It operates over an operating temperature range of -40°C to +125°C.

FEATURES

- V_{CCA} Supply Voltage Range: 0.8V to 3.6V
- V_{CCB} Supply Voltage Range: 0.8V to 3.6V
- Inputs Accept Voltages Higher than the Supply Voltage and up to 3.6V

74AVC4T774

- +12mA/-12mA Output Current
- Typical Data Rates:
 - 380Mbps (≥ 1.8V to 3.3V Translation)
 - 200Mbps (≥ 1.1V to 3.3V Translation)
 - 200Mbps (≥ 1.1V to 2.5V Translation)
 - 200Mbps (≥ 1.1V to 1.8V Translation)
 - 150Mbps (≥ 1.1V to 1.5V Translation)
 - 100Mbps (≥ 1.1V to 1.2V Translation)
- Support Partial Power-Down Mode
- Outputs in High-Impedance State when V_{CCA} or V_{CCB} = 0V
- -40°C to +125°C Operating Temperature Range
- Available in Green TSSOP-16, UTQFN-2.6×1.8-16L and TQFN-3.5×4-16L Packages

APPLICATIONS

Personal Electronic
Industrial Equipment
Enterprise Infrastructure
Telecom Equipment

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	PACKING OPTION	
	TSSOP-16	-40°C to +125°C	74AVC4T774XTS16G/TR	181 XTS16 XXXXX	Tape and Reel, 4000
74AVC4T774	UTQFN-2.6×1.8-16L	-40°C to +125°C	74AVC4T774XUSY16G/TR	17Z XXXXX	Tape and Reel, 3000
	TQFN-3.5×4-16L	-40°C to +125°C	74AVC4T774XTUU16G/TR	17Y XTUU16 XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

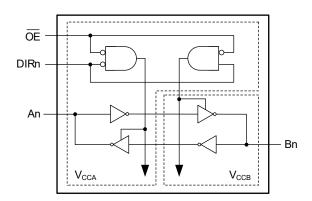
Supply Voltage Range, V _{CCA} 0.5V to 4.6V
Supply Voltage Range, V _{CCB} 0.5V to 4.6V
Input Voltage Range, V _I ⁽¹⁾ 0.5V to 4.6V
Output Voltage Range, V _O ^{(1) (2)}
Suspend or 3-State Mode0.5V to 4.6V
Active Mode0.5V to MIN(4.6V, V _{CCO} + 0.5V)
Input Clamp Current, I _{IK} (V _I < 0V)50mA
Output Clamp Current, I _{OK} (V _O < 0V)50mA
Continuous Output Current, I_O ($V_O = 0V$ to V_{CCO} (2)) ± 50 mA
Continuous Current through V _{CCA/B} or GND±100mA
Junction Temperature (3)+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility (4) (5)
HBM±6000V
CDM±1000V

RECOMMENDED OPERATING	CONDITIONS
Supply Voltage Range, V _{CCA}	0.8V to 3.6V
Supply Voltage Range, V _{CCB}	0.8V to 3.6V
Input Voltage Range, V _I	0V to 3.6V
Output Voltage Range, V _O	
Suspend or 3-State Mode	0V to 3.6V
Active Mode	0V to V _{CCO}
Output Current, Io	±12mA
Input Transition Rise or Fall Rate, Δt/ΔV	
V _{CCI} = 0.8V to 3.6V	10ns/V (MAX)
Operating Temperature Range	40°C to +125°C

- 1. The input and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.
- 2. V_{CCO} is the supply voltage associated with the data output ports.
- 3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability
- 4. For human body model (HBM), all pins comply with ANSI/ESDA/JEDEC JS-001 specifications.
- 5. For charged device model (CDM), all pins comply with ANSI/ESDA/JEDEC JS-002 specifications.

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

ESD SENSITIVITY CAUTION

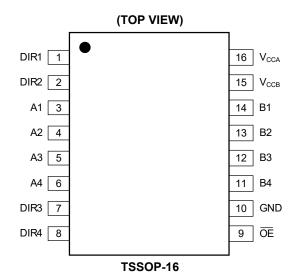
This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

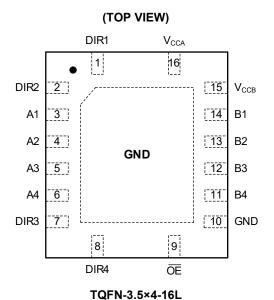
LOGIC DIAGRAM

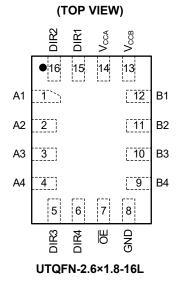
FUNCTION TABLE

	COI	NTROL INP	UTS		INPUT/OUTPUT			
ŌĒ	DIR1	DIR2	DIR3	DIR4	An	Bn		
L	L	X	X	X	A1 = B1	Input B1		
L	Н	X	X	X	Input A1	B1 = A1		
L	X	L	X	X	A2 = B2	Input B2		
L	X	Н	X	X	Input A2	B2 = A2		
L	X	X	L	X	A3 = B3	Input B3		
L	X	X	Н	X	Input A3	B3 = A3		
L	X	X	X	L	A4 = B4	Input B4		
L	X	X	X	Н	Input A4	B4 = A4		
Н	Х	X	X	X	Z	Z		

H = High Voltage Level


L = Low Voltage Level


Z = High-Impedance State.


X = Don't Care

PIN CONFIGURATIONS

74AVC4T774

4-Bit Dual-Supply Translating Transceiver with Configurable Voltage Translation and 3-State Outputs

PIN DESCRIPTION

PIN		NAME	FUNCTION
TSSOP-16/TQFN-3.5×4-16L	UTQFN-2.6×1.8-16L	NAME	FUNCTION
1	15	DIR1	Direction Control Input 1. DIR1 controls the signal direction of channel A1 and B1.
2	16	DIR2	Direction Control Input 2. DIR2 controls the signal direction of channel A2 and B2.
7	5	DIR3	Direction Control Input 3. DIR3 controls the signal direction of channel A3 and B3.
8	6	DIR4	Direction Control Input 4. DIR4 controls the signal direction of channel A4 and B4.
3, 4, 5, 6	1, 2, 3, 4	A1, A2, A3, A4	Data Inputs/Outputs.
9	7	ŌĒ	Output Enable Input (Active-Low).
10	8	GND	Ground.
14, 13, 12, 11	12, 11, 10, 9	B1, B2, B3, B4	Data Inputs/Outputs.
15	13	V _{CCB}	Supply Voltage V_{CCB} . The Bn signals are referenced to V_{CCB} .
16	14	V _{CCA}	Supply Voltage V_{CCA} . The An, DIRn and \overline{OE} signals are referenced to V_{CCA} .
Exposed Pad		GND	Connect it to GND internally. This pad is not an electrical connection point. TQFN-3.5×4-16L package only.

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at T_A = +25°C. V_{CCI} is the supply voltage associated with the data input ports. V_{CCO} is the supply voltage associated with the data output ports, unless otherwise noted.)

PARAMETER	SYMBOL	CON	IDITIONS	TEMP	MIN	TYP	MAX	UNITS
			V _{CCI} = 0.8V	Full	0.70 × V _{CCI}			
		Data in note	V _{CCI} = 1.1V to 1.95V	Full	0.65 × V _{CCI}			.,
		Data inputs	V _{CCI} = 2.3V to 2.7V	Full	1.6			V
Llink Lavel Innest Valtage			V _{CCI} = 3.0V to 3.6V	Full	2.0			
High-Level Input Voltage	V _{IH}		V _{CCA} = 0.8V	Full	0.70 × V _{CCA}			
		DID. OF insute	V _{CCA} = 1.1V to 1.95V	Full	0.65 × V _{CCA}			V
		DIRn, OE inputs	V _{CCA} = 2.3V to 2.7V	Full	1.6			V
			V _{CCA} = 3.0V to 3.6V	Full	2.0			
			V _{CCI} = 0.8V	Full			0.30 × V _{CCI}	
		Data innuta	V _{CCI} = 1.1V to 1.95V	Full			0.35 × V _{CCI}	V
		Data inputs	V _{CCI} = 2.3V to 2.7V	Full			0.7	V
Low-Level Input Voltage			V _{CCI} = 3.0V to 3.6V	Full			0.8	<u>i</u>
	V _{IL}	DIRn, OE inputs	V _{CCA} = 0.8V	Full			0.30 × V _{CCA}	
			V _{CCA} = 1.1V to 1.95V	Full			0.35 × V _{CCA}	V
			V _{CCA} = 2.3V to 2.7V	Full			0.7	
			V _{CCA} = 3.0V to 3.6V	Full			0.8	<u>. </u>
		$V_{CCO} = 0.8V \text{ to } 3.6^{\circ}$	$V_{CCO} = 0.8V \text{ to } 3.6V, I_{OH} = -100\mu\text{A}$			V _{CCO} - 0.01		
		V _{CCO} = 1.1V, I _{OH} =	-3mA	Full	0.85	0.98		
Lligh Lavel Output Valtage	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V _{CCO} = 1.4V, I _{OH} =	-6mA	Full	1.05	1.22		V
High-Level Output Voltage	V _{OH}	V _{CCO} = 1.65V, I _{OH} =	= -8mA	Full	1.20	1.44		V
		V _{CCO} = 2.3V, I _{OH} =	-9mA	Full	1.75	2.12		
		V _{CCO} = 3.0V, I _{OH} =	-12mA	Full	2.30	2.75		
		$V_{CCO} = 0.8V \text{ to } 3.6^{\circ}$	V, I _{OL} = 100μA	Full		0.01	0.10	
		V _{CCO} = 1.1V, I _{OL} = 3	3mA	Full		0.09	0.25	
Lave Lavel Ordered Walte	.,,	V _{CCO} = 1.4V, I _{OL} =	6mA	Full		0.14	0.35	.,
Low-Level Output Voltage	V _{OL}	V _{CCO} = 1.65V, I _{OL} =	- 8mA	Full		0.17	0.45	- V -
		V _{CCO} = 2.3V, I _{OL} =	9mA	Full		0.15	0.55	
		V _{CCO} = 3.0V, I _{OL} =	12mA	Full		0.21	0.70	

ELECTRICAL CHARACTERISTICS (continued)

(Full = -40°C to +125°C, all typical values are measured at T_A = +25°C. V_{CCI} is the supply voltage associated with the data input ports. V_{CCO} is the supply voltage associated with the data output ports, unless otherwise noted.)

PARAMETER	SYMBOL		CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
Input Leakage Current	I _I	DIRn, OE inputs	S_i , V_{CCA} or $V_{CCB} = 0.8V$ to 3.6V, $V_i = 0V$ or 3.6V	Full		±0.02	±5	μA
		A or B ports, V _{CC}	Full		±0.02	±5		
Off-State Output Current (1)	l _{oz}	A ports, V _{CCA} = 3	Full		±0.02	±5	μΑ	
		B ports, V _{CCA} = 0	V , V_{CCB} = 3.6 V , V_{O} = 0 V or V_{CCO}	Full		±0.02	±5	
Power-Off Leakage		A ports, V _{CCA} = 0	$V_{CCB} = 0.8V \text{ to } 3.6V, V_{I} \text{ or } V_{O} = 0V \text{ or } 3.6V$	Full		±0.02	±5	
OFF		B ports, V _{CCB} = 0	Full		±0.02	±5	μA	
	I _{CCA}	$V_I = 0V \text{ or } V_{CCI},$ $I_O = 0A$	V _{CCA} = 0.8V to 3.6V, V _{CCB} = 0.8V to 3.6V	Full		0.9	10	
			V _{CCA} = 3.6V, V _{CCB} = 0V	Full		0.2	10	
			V _{CCA} = 0V, V _{CCB} = 3.6V	Full	-2	-0.02		
Supply Current		$V_1 = 0V \text{ or } V_{CCI},$ $I_0 = 0A$	$V_{CCA} = 0.8V \text{ to } 3.6V, V_{CCB} = 0.8V \text{ to } 3.6V$	Full		0.9	10	μA
	I _{CCB}		V _{CCA} = 3.6V, V _{CCB} = 0V	Full	-2	-0.02		
			V _{CCA} = 0V, V _{CCB} = 3.6V	Full		0.2	10	
	I _{CCA} + I _{CCB}	$V_I = 0V \text{ or } V_{CCI},$ $I_O = 0A$	$V_{CCA} = 0.8V$ to 3.6V, $V_{CCB} = 0.8V$ to 3.6V	Full		1.8	20	
Additional Supply Current	ΔI _{CC}	$V_{CCA} = V_{CCB} = 3.6$	SV, V _I = 3.0V	Full		12.0	200	μA
Input Capacitance	Cı	DIRn, OE inputs	s, $V_{CCA} = V_{CCB} = 3.3V$, $V_I = 0V$ or $3.3V$	+25°C		4.0		pF
Input/Output Capacitance	C _{I/O}	A or B ports, V _{CC}	A = V _{CCB} = 3.3V, V _O = 0V or 3.3V	+25°C		5.0		pF

NOTE:

1. For I/O ports, the parameter I_{OZ} includes the input leakage current.

ELECTRICAL CHARACTERISTICS (continued)

Typical Total Supply Current (I_{CCA} + I_{CCB})

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

V				V _{CCB}				UNITS
V _{CCA}	0V	0.8V	1.2V	1.5V	1.8V	2.5V	3.3V	UNITS
0V	0	0.2	0.2	0.2	0.2	0.2	0.2	μA
0.8V	0.2	1.3	1.3	1.3	1.3	1.3	1.3	μA
1.2V	0.2	1.3	1.3	1.3	1.3	1.3	1.3	μA
1.5V	0.2	1.3	1.3	1.3	1.3	1.3	1.3	μA
1.8V	0.2	1.3	1.3	1.3	1.3	1.3	1.3	μA
2.5V	0.2	1.3	1.3	1.3	1.3	1.3	1.3	μA
3.3V	0.2	1.3	1.3	1.3	1.3	1.3	1.3	μΑ

Typical Power Dissipation Capacitance

 $(T_A = +25^{\circ}C, V_{CCA} = V_{CCB}, unless otherwise noted.)$

PARAMETER	SYMBOL	CONDITIONS			UNITS				
PARAMETER	STWIBOL	CONDITIONS	0.8V	1.2V	1.5V	1.8V	2.5V	3.3V	UNITS
		A ports: (direction An to Bn), outputs enabled	2.5	2.5	2.5	3.0	3.0	3.0	
		A ports: (direction An to Bn), outputs disabled	1.0	1.0	1.0	1.0	1.0	1.5	
		A ports: (direction Bn to An), outputs enabled	11.5	11.5	11.5	11.5	12.0	12.0	
Power Dissipation	C	A ports: (direction Bn to An), outputs disabled		2.0	2.0	2.0	2.0	2.0	рF
Capacitance (1) (2)	C_{PD}	B ports: (direction An to Bn), outputs enabled	11.5	11.5	11.5	11.5	12.0	12.0	pr
		B ports: (direction An to Bn), outputs disabled	2.0	2.0	2.0	2.0	2.0	2.0	
		B ports: (direction Bn to An), outputs enabled		2.5	2.5	3.0	3.0	3.0	
		B ports: (direction Bn to An), outputs disabled	1.0	1.0	1.0	1.0	1.0	1.5	

NOTES:

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

$$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$$

where:

 f_i = Input frequency in MHz.

f_o = Output frequency in MHz.

C_L = Output load capacitance in pF.

V_{CC} = Supply voltage in Volts.

N = Number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_o) = \text{Sum of the outputs.}$

2. $f_i = 10MHz$, $V_I = GND$ to V_{CC} , $t_R = t_F = 1$ ns, $C_L = 0$ pF, $R_L = \infty$.

DYNAMIC CHARACTERISTICS

Typical Dynamic Characteristics at $V_{CCA} = 0.8V$ and $T_A = +25^{\circ}C$

(See Figure 1 for test circuit. See Figure 2 and Figure 3 for waveforms, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	V _{CCB}							
PARAMETER	STWIBOL		0.8V	1.2V	1.5V	1.8V	2.5V	3.3V	UNITS	
Propagation Delay (1)		An to Bn	17.5	9.5	9.0	8.5	8.5	9.5	200	
	t _{PD}	Bn to An	17.5	13.5	13.0	12.5	12.5	12.0	ns	
Disable Time		OE to An	20.5	20.5	20.5	20.5	20.5	20.5	ns	
Disable Time	t _{DIS}	OE to Bn	30.0	18.5	17.0	16.5	15.5	16.5		
Enable Time	t _{EN}	OE to An	27.0	27.0	27.0	27.0	27.0	27.0		
		OE to Bn	35.0	18.5	17.0	16.5	16.0	16.0	ns	

NOTE:

Typical Dynamic Characteristics at $V_{CCB} = 0.8V$ and $T_A = +25^{\circ}C$

(See Figure 1 for test circuit. See Figure 2 and Figure 3 for waveforms, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	V _{CCA}							
PARAMETER	STIVIBUL	CONDITIONS	V8.0	1.2V	1.5V	1.8V	2.5V	3.3V	UNITS	
Propagation Delay (1)		An to Bn	17.5	13.5	13.0	12.5	12.5	12.5		
	t _{PD}	Bn to An	17.5	9.5	9.0	8.5	9.5	9.5	ns	
Disable Time	toic	OE to An	20.5	7.0	5.0	4.5	4.0	4.0		
Disable Time		OE to Bn	30.0	20.5	19.0	18.5	18.0	18.0	ns	
Enable Time	t _{EN}	OE to An	27.0	7.5	5.5	4.5	3.0	3.0		
		OE to Bn	35.0	26.0	24.0	23.0	23.0	22.5	ns	

NOTE:

1. t_{PD} is the same as t_{PLH} and t_{PHL} . t_{DIS} is the same as t_{PLZ} and t_{PHZ} . t_{EN} is the same as t_{PZL} and t_{PZH} .

^{1.} t_{PD} is the same as t_{PLH} and t_{PHL} . t_{DIS} is the same as t_{PLZ} and t_{PHZ} . t_{EN} is the same as t_{PZL} and t_{PZH} .

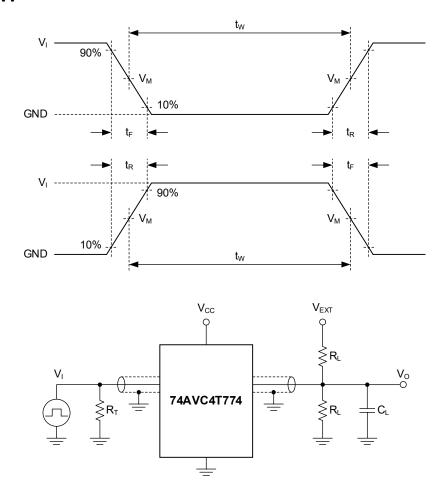
DYNAMIC CHARACTERISTICS (continued)

(See Figure 1 for test circuit. See Figure 2 and Figure 3 for waveforms. Full = -40° C to $+125^{\circ}$ C, all typical values are measured at $T_A = +25^{\circ}$ C, unless otherwise noted.)

							V _{CCB}					
PARAMETER	SYMBOL	CONDITIONS	1	.2V ± 0.1	IV	1	.5V ± 0.1	IV	1.	8V ± 0.1	5V	UNITS
			MIN (1)	TYP	MAX (1)	MIN (1)	TYP	MAX (1)	MIN (1)	TYP	MAX (1)	
V _{CCA} = 1.1V to 1.3V								•			•	
Propagation Delay (2)	4	An to Bn	1.0	6.5	12.1	1.0	5.0	9.0	0.5	4.5	8.0	
Propagation Delay	t _{PD}	Bn to An	1.0	6.5	12.1	1.0	5.5	10.5	1.0	5.0	10.0	ns
Disable Time	+	OE to An	1.0	8.0	13.7	1.0	8.0	13.7	1.0	8.0	13.7	no
Disable Time	t _{DIS}	OE to Bn	1.0	11.0	19.0	1.0	9.0	14.5	1.0	8.5	13.7	ns
Enable Time	+	OE to An	0.5	9.5	16.9	0.5	9.5	16.9	0.5	9.5	16.9	ne
Lilable Tille	t _{EN}	OE to Bn	1.0	11.5	20.9	0.5	9.0	15.6	0.5	8.5	13.9	ns
V _{CCA} = 1.4V to 1.6V												
Propagation Delay ⁽²⁾	t _{PD}	An to Bn	1.0	5.5	10.5	0.5	4.0	7.4	0.5	4.0	6.5	ns
1 Topagation Delay	ųрD	Bn to An	1.0	5.0	9.0	0.5	4.0	7.4	0.5	4.0	6.9	113
Disable Time	t	OE to An	1.0	5.5	8.6	1.0	5.5	8.6	1.0	5.5	8.6	ns
Disable Time	t _{DIS}	OE to Bn	1.0	9.5	15.6	1.0	7.0	11.1	1.0	6.5	10.2	113
Enable Time	t _{EN}	OE to An	0.5	6.0	9.8	0.5	6.0	9.8	0.5	6.0	9.8	ns
Lilable Time	EN	OE to Bn	0.5	10.0	17.4	0.5	7.0	12.1	0.5	6.5	10.5	113
V _{CCA} = 1.65V to 1.95V												
Propagation Delay (2)	on Delay ⁽²⁾ t _{PD}	An to Bn	1.0	5.0	10.0	0.5	4.0	6.9	0.5	3.5	6.0	ns
1 Topagation Belay		Bn to An	0.5	5.0	8.0	0.5	4.0	6.5	0.5	3.5	6.0	113
Disable Time	t _{DIS}	OE to An	1.0	5.0	7.7	1.0	5.0	7.6	1.0	5.0	7.6	ns
Disable Time	UIS	OE to Bn	1.0	9.5	15.1	1.0	7.0	10.5	1.0	6.0	9.5	110
Enable Time	t _{EN}	OE to An	0.5	5.0	7.8	0.5	5.0	7.8	0.5	5.0	7.8	ns
Enable Time	EN	OE to Bn	0.5	9.0	16.3	0.5	6.5	10.9	0.5	5.5	9.4	110
V _{CCA} = 2.3V to 2.7V											•	
Propagation Delay (2)	t _{PD}	An to Bn	1.0	5.0	9.4	0.5	3.5	6.3	0.5	3.0	5.4	ns
Tropagation Bolay	(PD	Bn to An	0.5	4.5	6.8	0.5	3.5	5.6	0.5	3.0	5.0	110
Disable Time	t _{DIS}	OE to An	0.5	3.5	5.5	0.5	3.5	5.5	0.5	3.5	5.5	ns
Bloable Time	UIS	OE to Bn	1.0	9.0	14.3	1.0	6.5	9.9	1.0	5.5	8.5	110
Enable Time	t _{EN}	OE to An	0.5	3.5	5.2	0.5	3.5	5.2	0.5	3.5	5.2	ns
Lilable Time	EN	OE to Bn	0.5	8.5	15.2	0.5	6.0	9.8	0.5	5.0	8.2	113
V _{CCA} = 3.0V to 3.6V											•	
Propagation Delay (2)	t _{PD}	An to Bn	0.5	5.0	9.2	0.5	3.5	6.1	0.5	3.0	5.1	ns
1 Topagation Belay	ΨD	Bn to An	0.5	4.0	6.6	0.5	3.0	5.0	0.5	3.0	4.6	113
Disable Time	t _{DIS}	OE to An	0.5	4.5	6.4	0.5	4.5	6.4	0.5	4.5	6.4	ns
DISADIC TITLE	เบเร	OE to Bn	1.0	8.0	13.3	1.0	6.5	9.9	1.0	5.5	8.6	113
Enable Time	t _{EN}	OE to An	0.5	3.0	4.6	0.5	3.0	4.6	0.5	3.0	4.6	ns
LIADIC TITIE	EN	OE to Bn	0.5	8.0	14.7	0.5	5.5	9.3	0.5	5.0	7.8	113

- 1. Specified by design and characterization, not production tested.
- 2. t_{PD} is the same as t_{PLH} and t_{PHL} . t_{DIS} is the same as t_{PLZ} and t_{PHZ} . t_{EN} is the same as t_{PZL} and t_{PZH} .

DYNAMIC CHARACTERISTICS (continued)


(See Figure 1 for test circuit. See Figure 2 and Figure 3 for waveforms. Full = -40° C to $+125^{\circ}$ C, all typical values are measured at $T_A = +25^{\circ}$ C, unless otherwise noted.)

			V _{CCB}						
PARAMETER	SYMBOL	CONDITIONS	2.5V ± 0.2V				3.3V ± 0.3V		
			MIN (1)	TYP	MAX (1)	MIN (1)	TYP	MAX (1)	
V _{CCA} = 1.1V to 1.3V		•							
Propagation Delay (2)		An to Bn	0.5	4.5	6.8	0.5	4.0	6.6	
	t _{PD}	Bn to An	1.0	5.0	9.4	0.5	4.5	9.2	ns
D: 11 T:		OE to An	1.0	8.0	13.7	1.0	8.0	13.7	
Disable Time	t _{DIS}	OE to Bn	1.0	7.0	11.5	1.0	7.5	11.8	ns
5 II T		OE to An	0.5	9.5	16.9	0.5	9.5	16.9	
Enable Time	t _{EN}	OE to Bn	0.5	7.5	12.2	0.5	7.0	11.6	ns
V _{CCA} = 1.4V to 1.6V					•			•	I
Duran and the Dalay (2)		An to Bn	0.5	3.5	5.6	0.5	3.0	5.0	
Propagation Delay (2)	t _{PD}	Bn to An	0.5	3.5	6.3	0.5	3.5	6.1	ns
Disable Time t _{DIS}	4	OE to An	1.0	5.5	8.6	1.0	5.5	8.6	ns
	T _{DIS}	OE to Bn	1.0	5.5	8.5	1.0	6.0	8.8	
Enable Time t _{EN}		OE to An	0.5	6.0	9.8	0.5	6.0	9.8	
	t _{EN}	OE to Bn	0.5	5.5	8.9	0.5	5.0	8.3	ns
V _{CCA} = 1.65V to 1.95V					•	·		•	
D (2)		An to Bn	0.5	3.0	5.0	0.5	3.0	4.6	ns
Propagation Delay (2)	t _{PD}	Bn to An	0.5	3.0	5.4	0.5	3.0	5.1	
D T.	,	OE to An	1.0	5.0	7.6	1.0	5.0	7.6	ns
Disable Time	t _{DIS}	OE to Bn	0.5	5.0	7.5	1.0	5.5	7.7	
E T		OE to An	0.5	5.0	7.8	0.5	5.0	7.8	ns
Enable Time	t _{EN}	OE to Bn	0.5	5.0	7.8	0.5	4.5	7.2	
V _{CCA} = 2.3V to 2.7V	•				•	•	•	•	•
		An to Bn	0.5	2.5	4.4	0.5	2.5	4.1	ns
Propagation Delay (2)	t _{PD}	Bn to An	0.5	2.5	4.4	0.5	2.5	4.2	
Disable Time	4	OE to An	0.5	3.5	5.5	0.5	3.5	5.5	1
Disable Time	t _{DIS}	OE to Bn	0.5	4.5	7.1	1.0	4.5	6.6	ns
Enable Time		OE to An	0.5	3.5	5.2	0.5	3.5	5.2	
Enable Time	t _{EN}	OE to Bn	0.5	4.0	6.6	0.5	3.5	6.0	ns
V _{CCA} = 3.0V to 3.6V	•				•	•	•	•	•
Draw anation Dalou (2)		An to Bn	0.5	2.5	4.2	0.5	2.5	3.8	
Propagation Delay (2)	t _{PD}	Bn to An	0.5	2.5	4.0	0.5	2.5	3.8	ns
Disable Time	1	OE to An	0.5	4.5	6.4	0.5	4.5	6.4	
Disable Time	t _{DIS}	OE to Bn	0.5	4.0	6.6	1.0	4.5	6.4	ns
Enoble Time		OE to An	0.5	3.0	4.6	0.5	3.0	4.6	
Enable Time	t _{EN}	OE to Bn	0.5	4.0	6.1	0.5	3.5	5.5	ns

- 1. Specified by design and characterization, not production tested.
- 2. t_{PD} is the same as t_{PLH} and t_{PHL} . t_{DIS} is the same as t_{PLZ} and t_{PHZ} . t_{EN} is the same as t_{PZL} and t_{PZH} .

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

R_L: Load resistance.

C_L: Load capacitance (includes jig and probe).

R_T: Termination resistance (equals to output impedance Z_O of the pulse generator).

 $\ensuremath{V_{\text{EXT}}}\xspace$: External voltage is used to measure switching time.

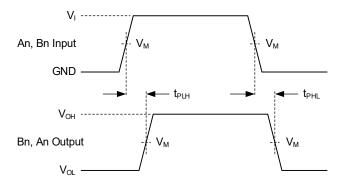
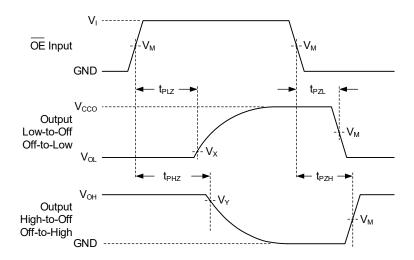

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

SUPPLY VOLTAGE	INPUT		LOAD			V _{EXT}	
V _{CCA} , V _{CCB}	V _I ⁽¹⁾	Δt/ΔV	CL	R _L	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ} ⁽²⁾
0.8V to 1.6V	V _{CCI}	≤ 1.0ns/V	15pF	2kΩ	Open	GND	2 × V _{CCO}
1.65V to 2.7V	V _{CCI}	≤ 1.0ns/V	15pF	2kΩ	Open	GND	2 × V _{CCO}
3.0V to 3.6V	V _{CCI}	≤ 1.0ns/V	15pF	2kΩ	Open	GND	2 × V _{CCO}

- 1. V_{CCI} is the supply voltage associated with the data input ports.
- 2. V_{CCO} is the supply voltage associated with the data output ports.

WAVEFORMS



Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 2. Input (An, Bn) to Output (Bn, An) Propagation Delay Times

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. Enable and Disable Times

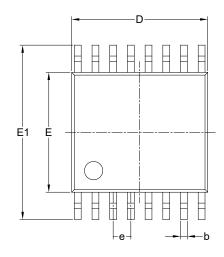
Table 2. Measurement Points

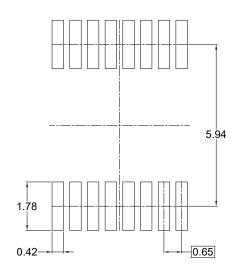
SUPPLY VOLTAGE	INP	UT ⁽¹⁾	OUTPUT				
V _{CCA} , V _{CCB}	Vı	V _M ⁽²⁾	V _M ⁽³⁾	V _X	V _Y		
0.8V to 1.6V	V _{CCI}	0.5 × V _{CCI}	0.5 × V _{CCO}	V _{OL} + 0.1V	V _{OH} - 0.1V		
1.65V to 2.7V	V _{CCI}	0.5 × V _{CCI}	0.5 × V _{CCO}	V _{OL} + 0.15V	V _{OH} - 0.15V		
3.0V to 3.6V	V _{CCI}	0.5 × V _{CCI}	0.5 × V _{CCO}	V _{OL} + 0.3V	V _{OH} - 0.3V		

- 1. V_{CCI} is the supply voltage associated with the data input ports.
- 2. The measurement points should be V_{IH} or V_{IL} when $\Delta t/\Delta V > 1.0 ns/V$.
- 3. V_{CCO} is the supply voltage associated with the data output ports.

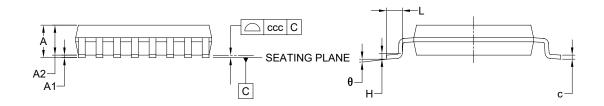
74AVC4T774

4-Bit Dual-Supply Translating Transceiver with Configurable Voltage Translation and 3-State Outputs


REVISION HISTORY

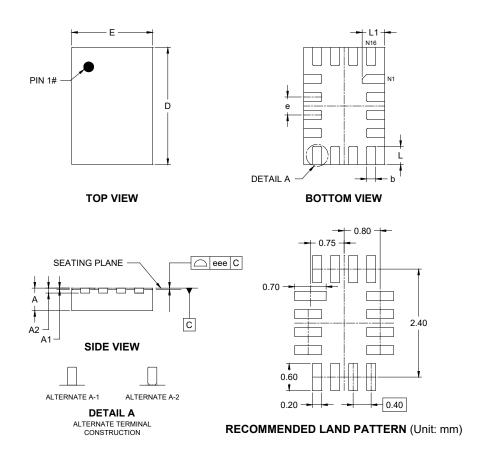

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (DECEMBER 2024) to REV.A


Page

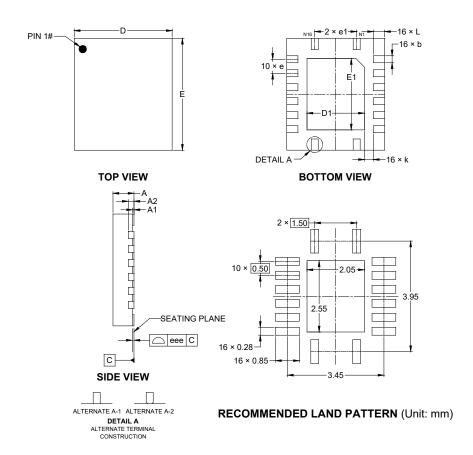
PACKAGE OUTLINE DIMENSIONS TSSOP-16

RECOMMENDED LAND PATTERN (Unit: mm)



Symbol	Dimensions In Millimeters						
Symbol	MIN	NOM	MAX				
Α	-	-	1.200				
A1	0.050	-	0.150				
A2	0.800	-	1.050				
b	0.190	-	0.300				
С	0.090	-	0.200				
D	4.860	-	5.100				
Е	4.300	-	4.500				
E1	6.200 - 6.600						
е		0.650 BSC					
L	0.450	-	0.750				
Н	0.250 TYP						
θ	0°	-	8°				
ccc	0.100						

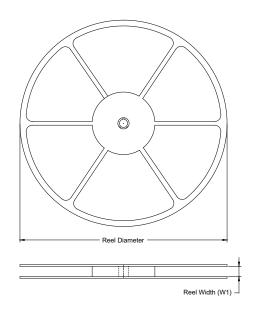
- This drawing is subject to change without notice.
 The dimensions do not include mold flashes, protrusions or gate burrs.
- 3. Reference JEDEC MO-153.


PACKAGE OUTLINE DIMENSIONS UTQFN-2.6×1.8-16L

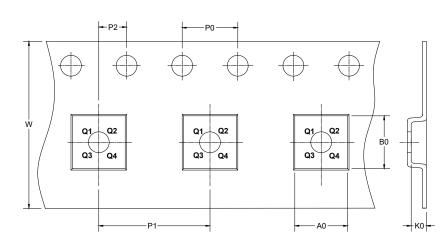
Symbol	Dimensions In Millimeters						
Symbol	MIN	NOM	MAX				
Α	0.450	-	0.550				
A1	-0.004	-0.004 -					
A2	0.110 REF						
b	0.150	-	0.250				
D	2.500	-	2.700				
E	1.700 - 1.900						
е	0.400 BSC						
L	0.300	-	0.500				
L1	0.400	-	0.600				
eee	0.050						

NOTE: This drawing is subject to change without notice.

PACKAGE OUTLINE DIMENSIONS TQFN-3.5×4-16L



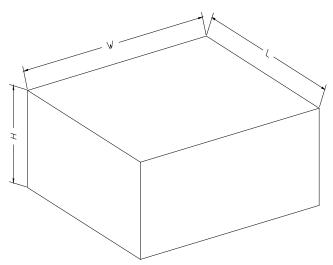
Cymhol	Dimensions In Millimeters							
Symbol	MIN	NOM	MAX					
Α	0.700	-	0.800					
A1	0.000	-	0.050					
A2		0.203 REF						
b	0.200	-	0.300					
D	3.400	3.400 -						
E	3.900	-	4.100					
D1	1.950	-	2.150					
E1	2.450 - 2.650							
е	0.500 BSC							
e1	1.500 BSC							
k	0.325 REF							
L	0.300	0.300 - 0.500						
eee	0.080							


NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS


DIRECTION OF FEED

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP-16	13"	12.4	6.80	5.40	1.50	4.0	8.0	2.0	12.0	Q1
UTQFN-2.6×1.8-16L	7"	12.4	2.10	2.90	0.75	4.0	4.0	2.0	12.0	Q1
TQFN-3.5×4-16L	13"	12.4	3.75	4.25	1.05	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18
13"	386	280	370	5