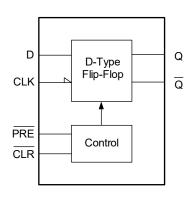


74AUP1G74 Low Power Single D-Type Positive Edge-Triggered Flip-Flop with Clear and Preset

GENERAL DESCRIPTION


The 74AUP1G74 is a low power single positive edge-triggered D-Type flip-flop with clear and preset functions. This device can operate in the supply voltage range from 0.8V to 3.6V.

No matter what the levels of the other inputs are, the preset (PRE) input or clear (CLR) input can be pulled low to set or reset the outputs. When the preset input and clear input are held high, data at the D input that suffices for setup time purposes is moved to the Q output on the low-to-high clock transition. After the hold time interval, data at the D input can be changed without any influence on output levels. Clock triggering appears at a voltage level which is uncorrelated with the rise time of the clock pulse.

This device is highly suitable for partial power-down applications using power-off leakage current (I_{OFF}) circuit.

The 74AUP1G74 is available in a Green VSSOP-8 package. It operates over an ambient temperature range of -40°C to +125°C.

LOGIC DIAGRAM

FEATURES

- Wide Supply Voltage Range: 0.8V to 3.6V
- Inputs Accept Voltages Higher than the Supply Voltage
- +4mA/-4mA Output Current
- Low Static Power Dissipation: I_{cc} = 1μA (MAX)
- Low Dynamic Power Dissipation:
 - C_{PD} = 5.5pF (TYP) at V_{CC} = 3.3V
- Input Capacitance: C_I = 4pF (TYP)
- Propagation Delay: t_{PD} = 9ns (MAX) at V_{CC} = 3.3V
- The Overshoot and Undershoot of Low Noise are Less than 10% of V_{CC}
- Applicable to Point-to-Point
- Latch-up Performance (> 100mA) Meets JESD 78
 Class II Standard
- Outputs in High-Impedance State when V_{cc} = 0V
- -40°C to +125°C Operating Temperature Range
- Available in a Green VSSOP-8 Package

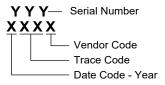
FUNCTION TABLE

	INP	OUTI	PUTS		
PRE	CLR	CLK	D	Q	Q
L	Н	X	X	Н	L
X	L	X	X	L	Н
Н	Н	1	Н	Н	L
Н	Н	1	L	L	Н
Н	Н	L	X	Q_0	\bar{Q}_0

H = High Voltage Level

L = Low Voltage Level

↑ = Low-to-High Clock Transition


X = Don't Care

PACKAGE/ORDERING INFORMATION

MODEL	MODEL PACKAGE SPECIFIED TEMPERATURE RANGE		ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION	
74AUP1G74	VSSOP-8	-40°C to +125°C	74AUP1G74XVS8G/TR	0GU XXXX	Tape and Reel, 3000	

MARKING INFORMATION

NOTE: XXXX = Date Code, Trace Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS (1)

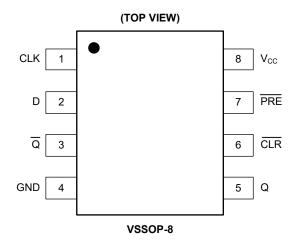
Supply Voltage Range, V _{CC} 0.5V to 4.6V	
Input Voltage Range, V _I ⁽²⁾ 0.5V to 4.6V	
Output Voltage Range, Vo (2)	
High State or Low State0.5V to MIN(4.6V, V _{CC} + 0.5V)	
High-Impedance or Power-Off State0.5V to 4.6V	
Input Clamp Current, I _{IK} (V _I < 0V)50mA	
Output Clamp Current, I _{OK} (V _O < 0V)50mA	
Continuous Output Current, I_0 ±20mA	
Continuous Current through V _{CC} or GND±50mA	
Junction Temperature (3)+150°C	
Storage Temperature Range65°C to +150°C	
Lead Temperature (Soldering, 10s)+260°C	
ESD Susceptibility	
HBM6000V	
CDM1000V	

RECOMMENDED OPERATING CONDITIONS

INCOMINICIADED OF CINATING	CONDITIONS
Supply Voltage Range, Vcc	0.8V to 3.6V
Input Voltage Range, V _I ⁽⁴⁾	0V to 3.6V
Output Voltage Range, V _O	
High State or Low State	0V to V _{CC}
High-Impedance or Power-Off State	0V to 3.6V
Output Current, Io	±4mA
Input Transition Rise or Fall Rate, Δt/ΔV	
V _{CC} = 0.8V to 3.6V	200ns/V (MAX)
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

- 1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.
- 2. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
- 3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.
- 4. Unused input pins must be held at V_{CC} or GND to guarantee the device in normal operation.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	CLK	Clock Input (Low-to-High Clock Transition, Edge-Triggered).
2	D	Data Input.
3	Q	Complementary Output.
4	GND	Ground.
5	Q	Output.
6	CLR	Clear Input (Active-Low).
7	PRE	Preset Input (Active-Low).
8	Vcc	Supply Voltage.

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
		V _{CC} = 0.8V	Full	V _{cc}				
High Lavel Instit Valtage		V _{CC} = 1.1V to 1.95V	Full	0.7 × V _{CC}			V	
High-Level Input Voltage	V _{IH}	V _{CC} = 2.3V to 2.7V	Full	1.6			V	
		V _{CC} = 3.0V to 3.6V	Full	2.0				
		V _{CC} = 0.8V	Full			0		
Low Lovel Input Voltage	\/	V _{CC} = 1.1V to 1.95V	Full			0.3 × V _{CC}	V	
Low-Level Input Voltage	V_{IL}	V _{CC} = 2.3V to 2.7V	Full			0.7	V	
		V _{CC} = 3.0V to 3.6V	Full			0.9		
		$V_{CC} = 0.8V$ to 3.6V, $I_{OH} = -20\mu A$	Full	V _{CC} - 0.05	V _{CC} - 0.005			
		V _{CC} = 1.1V, I _{OH} = -1.1mA	Full	0.77	0.96			
		V _{CC} = 1.4V, I _{OH} = -1.7mA	Full	1.05	1.24			
Lligh Lovel Output Voltage		V _{CC} = 1.65V, I _{OH} = -1.9mA	Full	1.30	1.50		\/	
High-Level Output Voltage	V _{OH}	V _{CC} = 2.3V, I _{OH} = -2.3mA	Full	2.0	2.15		V	
		V _{CC} = 2.3V, I _{OH} = -3.1mA	Full	1.85	2.09			
		V _{CC} = 3.0V, I _{OH} = -2.7mA	Full	2.70	2.84			
		V _{CC} = 3.0V, I _{OH} = -4.0mA	OmA Full 2.55 2.76 OL = 20μA Full 0.005 0.005					
		$V_{CC} = 0.8V \text{ to } 3.6V, I_{OL} = 20\mu\text{A}$	Full		0.005	0.05		
		V _{CC} = 1.1V, I _{OL} = 1.1mA	Full		0.08	0.25		
		V _{CC} = 1.4V, I _{OL} = 1.7mA	Full		0.11	0.30		
Land and Order AVeltana	.,	V _{CC} = 1.65V, I _{OL} = 1.9mA Full			0.12	0.31	V	
Low-Level Output Voltage	V _{OL}	V _{CC} = 2.3V, I _{OL} = 2.3mA	Full		0.13	0.33	V	
		V _{CC} = 2.3V, I _{OL} = 3.1mA	Full		0.18	0.40		
		V _{CC} = 3.0V, I _{OL} = 2.7mA	Full		0.15	0.33		
		V _{CC} = 3.0V, I _{OL} = 4.0mA	Full		0.22	0.45		
Input Leakage Current	l _l	Data or control inputs, V_{CC} = 0V to 3.6V, V_I = GND to 3.6V	Full		±0.1	±1	μΑ	
Power-Off Leakage Current	I _{OFF}	$V_{CC} = 0V$, V_1 or $V_0 = 0V$ to 3.6V	Full		±0.1	±1	μΑ	
Additional Power-Off Leakage Current	ΔI_{OFF}	$V_{CC} = 0V \text{ to } 0.2V, V_1 \text{ or } V_0 = 0V \text{ to } 3.6V$	Full		±0.1	±1	μΑ	
Supply Current	I _{cc}	V_{CC} = 0.8V to 3.6V, V_I = GND or V_{CC} to 3.6V, I_O = 0A	Full		0.1	1	μA	
Additional Supply Current	ΔI_{CC}	One input at V_{CC} - 0.6V, other inputs at V_{CC} or GND, V_{CC} = 3.3V, V_1 = V_{CC} - 0.6V, I_0 = 0A	Full		1.6	20	μΑ	
Innut Congoitara	0	$V_{CC} = 0V$, $V_I = V_{CC}$ or GND	+25°C		4		n-	
Input Capacitance	Cı	V_{CC} = 3.6V, V_{I} = V_{CC} or GND	+25°C		4		pF	
Output Capacitance	Co	V _{CC} = 0V, V _O = GND	+25°C		5		pF	

DYNAMIC CHARACTERISTICS

(See Figure 1 for test circuit. Full = -40°C to +125°C, $C_L = 30 pF$, all typical values are measured at $T_A = +25$ °C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		TEMP	MIN (1)	TYP	MAX (1)	UNITS
		V _{CC} = 0.8V		+25°C		21		
		V _{CC} = 1.2V ± 0.1V		Full			40	
Clock Frequency		V _{CC} = 1.5V ± 0.1V		Full			50	1
	f _{cLock}	$V_{CC} = 1.8V \pm 0.15V$,	Full			60	MHz
		$V_{CC} = 2.5V \pm 0.2V$		Full			90	
		$V_{CC} = 3.3V \pm 0.3V$		Full			90	
		V _{CC} = 0.8V		+25°C		0		
		$V_{CC} = 1.2V \pm 0.1V$		Full	2			
Hold Time Date ofter CLICA		$V_{CC} = 1.5V \pm 0.1V$		Full	2]
Hold Time, Data after CLK ↑	t _H	$V_{CC} = 1.8V \pm 0.15V$,	Full	1.5			ns
		$V_{CC} = 2.5V \pm 0.2V$		Full	1.5			
		$V_{CC} = 3.3V \pm 0.3V$		Full	1.5			
			V _{CC} = 0.8V	+25°C		10		
			$V_{CC} = 1.2V \pm 0.1V$	Full	6			ns ns
	t _w	CLK high or low PRE or CLR low	$V_{CC} = 1.5V \pm 0.1V$	Full	5.5			
			$V_{CC} = 1.8V \pm 0.15V$	Full	5			
			$V_{CC} = 2.5V \pm 0.2V$	Full	4.5			
Pulse Duration			$V_{CC} = 3.3V \pm 0.3V$	Full	4.5			
uise Duration			$V_{CC} = 0.8V$	+25°C		10		
			$V_{CC} = 1.2V \pm 0.1V$	Full	6			
			$V_{CC} = 1.5V \pm 0.1V$	Full	5.5			
		FIXE OF CER TOW	$V_{CC} = 1.8V \pm 0.15V$	Full	5.5			
			$V_{CC} = 2.5V \pm 0.2V$	Full	5			
			$V_{CC} = 3.3V \pm 0.3V$	Full	4.5			
			V _{CC} = 0.8V	+25°C		4		
			$V_{CC} = 1.2V \pm 0.1V$	Full	2			
		Data high	$V_{CC} = 1.5V \pm 0.1V$	Full	2			ns
		Data High	$V_{CC} = 1.8V \pm 0.15V$	Full	2			" 3
			$V_{CC} = 2.5V \pm 0.2V$	Full	1.5			
Setup Time before CLK ↑	t _{su}		$V_{CC} = 3.3V \pm 0.3V$	Full	1.5			
	rsu		V _{CC} = 0.8V	+25°C		5		
			$V_{CC} = 1.2V \pm 0.1V$	Full	5			
		Data low	$V_{CC} = 1.5V \pm 0.1V$	Full	4			ns
		Data IOW	$V_{CC} = 1.8V \pm 0.15V$	Full	3			
			$V_{CC} = 2.5V \pm 0.2V$	Full	3			
			$V_{CC} = 3.3V \pm 0.3V$	Full	3			

DYNAMIC CHARACTERISTICS (continued)

(See Figure 1 for test circuit. Full = -40°C to +125°C, C_L = 30pF, all typical values are measured at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	COI	NDITIONS	TEMP	MIN (1)	TYP	MAX (1)	UNITS
			V _{CC} = 0.8V	+25°C		1.5		
			V _{CC} = 1.2V ± 0.1V	Full	1.5			
Setup Time before CLK ↑		PRE or CLR	$V_{CC} = 1.5V \pm 0.1V$	Full	1.5			no
	t _{su}	inactive	V _{CC} = 1.8V ± 0.15V	Full	1.5			ns
			V _{CC} = 2.5V ± 0.2V	Full	1.5			
			$V_{CC} = 3.3V \pm 0.3V$	Full	1.5			
			V _{CC} = 0.8V	+25°C		51		
			V _{CC} = 1.2V ± 0.1V	Full	5	16.5	27	
		OLIV to O	$V_{CC} = 1.5V \pm 0.1V$	Full	2.5	10	17.5	
		CLK to Q	V _{CC} = 1.8V ± 0.15V	Full	1.5	8	14	ns
			V _{CC} = 2.5V ± 0.2V	Full	0.5	4.5	9.5	
			$V_{CC} = 3.3V \pm 0.3V$	Full	0.5	3.5	9	
		CLK to Q	V _{CC} = 0.8V	+25°C		53		ns
			V _{CC} = 1.2V ± 0.1V	Full	6	17	26	
Propagation Delay ⁽²⁾			V _{CC} = 1.5V ± 0.1V	Full	2.5	7	17	
Propagation Delay	t _{PD}		V _{CC} = 1.8V ± 0.15V	Full	1.5	6	13.5	
			V _{CC} = 2.5V ± 0.2V	Full	0.8	5	9.5	
			$V_{CC} = 3.3V \pm 0.3V$	Full	0.5	4	9	
			V _{CC} = 0.8V	+25°C		55		
			V _{CC} = 1.2V ± 0.1V	Full	3	17.5	27	
		PRE or CLR to Q	$V_{CC} = 1.5V \pm 0.1V$	Full	3	11.5	17.5	
		or \overline{Q}	V _{CC} = 1.8V ± 0.15V	Full	2	7.5	14	ns
			V _{CC} = 2.5V ± 0.2V	Full	1	5.5	10	
			$V_{CC} = 3.3V \pm 0.3V$	Full	0.5	4.5	9	
			V _{CC} = 0.8V	+25°C		5.5		
			V _{CC} = 1.2V ± 0.1V	+25°C		5.5		1
Power Dissipation		f = 10MHz	V _{CC} = 1.5V ± 0.1V	+25°C		5.5		nE
Capacitance (3)	C_{PD}	I - IUIVIMZ	V _{CC} = 1.8V ± 0.15V	+25°C		5.5		pF -
			V _{CC} = 2.5V ± 0.2V	+25°C		5.5		
			$V_{CC} = 3.3V \pm 0.3V$	+25°C		5.5		

NOTES

- 1. Specified by design and characterization, not production tested.
- 2. t_{PD} is the same as t_{PLH} and t_{PHL} .
- 3. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

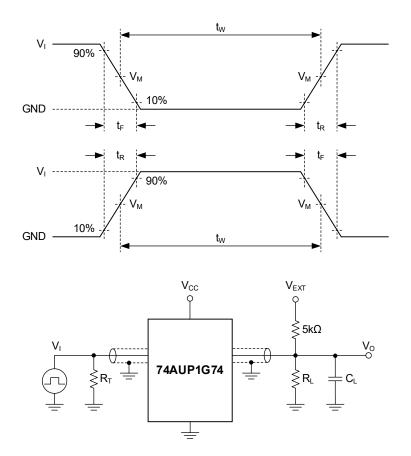
 $\mathsf{P}_\mathsf{D} = \mathsf{C}_\mathsf{PD} \times \mathsf{V_{CC}}^2 \times \mathsf{f_i} \times \mathsf{N} + \Sigma (\mathsf{C_L} \times \mathsf{V_{CC}}^2 \times \mathsf{f_o})$

where

 f_i = Input frequency in MHz.

f_o = Output frequency in MHz.

 C_L = Output load capacitance in pF.


 V_{CC} = Supply voltage in Volts.

N = Number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = Sum of outputs.

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

R_L: Load resistance.

C_L: Load capacitance (including jig and probe).

 R_T : Termination resistance (equal to output impedance Z_0 of the pulse generator).

 $\ensuremath{V_{\text{EXT}}}\xspace$: External voltage is used to measure switching time.

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

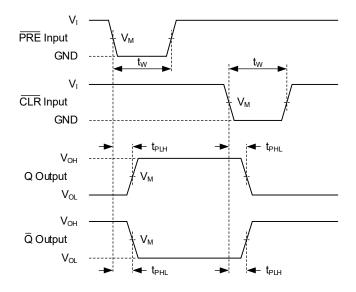
SUPPLY VOLTAGE	INPUT		LOAD		V _{EXT}		
V _{cc}	Vı	t _R , t _F	CL	R _L (1) (2)	t _{PHZ} , t _{PZH}	t _{PLZ} , t _{PZL}	t _{PLH} , t _{PHL}
0.8V to 3.6V	V _{CC}	≤ 3.0ns	30pF	5kΩ, 1MΩ	GND	2 × V _{CC}	Open

NOTES:

1. R_L = $5k\Omega$ is used to measure enable and disable times.

2. $R_L = 1M\Omega$ is used to measure propagation delays, setup and hold times and pulse width.

WAVEFORMS


Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

The shaded areas refer to when the input is allowed to change for predictable output performance.

Figure 2. The Clock Input to Output Propagation Delays, Clock Pulse Width, the D to CLK Setup, the CLK to D Hold Times and the Maximum Frequency

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. The $\overline{\text{PRE}}$ and $\overline{\text{CLR}}$ Input to Output Propagation Delays and Pulse Width

WAVEFORMS (continued)

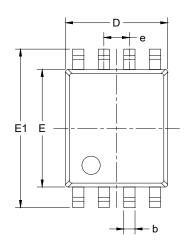
Table 2. Measurement Points

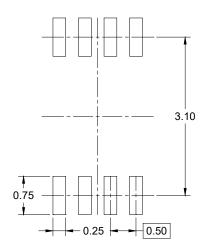
SUPPLY VOLTAGE	INF	OUTPUT	
V _{CC}	Vı	V _M	
0.8V to 3.6V	V _{CC}	0.5 × V _{CC}	0.5 × V _{CC}

NOTE:

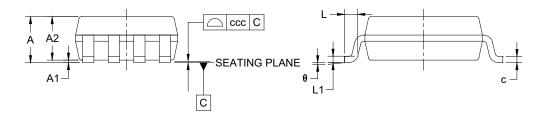
1. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 3.0ns.

REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Original (NOVEMBER 2023) to REV.A

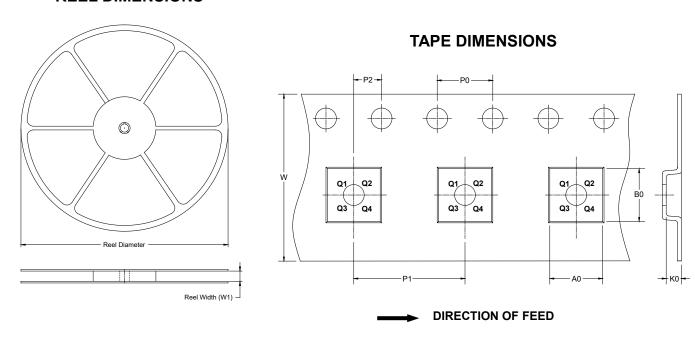
Page



PACKAGE OUTLINE DIMENSIONS VSSOP-8

RECOMMENDED LAND PATTERN (Unit: mm)

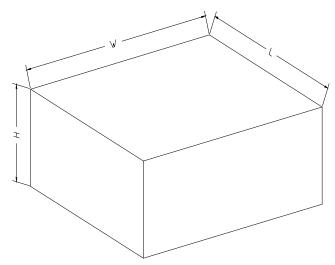
Cumbal	Di	mensions In Millimet	ers
Symbol	MIN	MOD	MAX
А	-	-	1.000
A1	0.000	-	0.150
A2	0.600		0.850
b	0.170	-	0.270
С	0.080		0.230
D	1.900	-	2.100
Е	2.200	-	2.400
E1	3.000	-	3.200
е		0.500 BSC	
L	0.150	-	0.400
L1		0.120 BSC	
θ	0°	-	8°
ccc		0.100	


NOTES:

- 1. This drawing is subject to change without notice.
- 2. The dimensions do not include mold flashes, protrusions or gate burrs.
- 3. Reference JEDEC MO-187 CA.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
VSSOP-8	7"	9.5	2.25	3.35	1.05	4.0	4.0	2.0	8.0	Q3

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18