

74LVTH16373 3.3V, 16-Bit D-Type Transparent Latch with 3-State Outputs

GENERAL DESCRIPTION

The 74LVTH16373 is a 16-bit D-type transparent latch with non-inverting 3-state outputs which is designed for 3.3V supply voltage. The device can provide capability in driving highly capacitive or relatively low-impedance loads, which makes it especially suitable for use in implementing buffer registers, I/O ports, bidirectional bus drivers and working registers.

The device can operate as two 8-bit latches or one 16-bit latch. When latch enable input nLE is set high, the outputs nQn will appear the data of inputs nDn. When nLE is set low, the nQn outputs will be latched at the levels of the inputs nDn one set-up time preceding the high-to-low transition.

A buffered output enable $n\overline{OE}$ input can make the 8 outputs set to either high/low logic levels or high-impedance state.

The bus hold on data inputs makes it unnecessary to use external pull-up/pull-down resistors to hold unused input.

FEATURES

- Wide Operating Voltage Range: 3.3V
- Input and Output Interface Capability to 5V System Environment
- +64mA/-32mA Output Current
- 16-Bit Transparent Latch
- 3-State Buffers
- Input and Output Switching Levels of TTL
- Power-up Reset
- Power-up 3-State
- No Bus Current Loading when Output is Connected to 5V Bus
- No External Pull-up/Pull-down Resistors are Required Due to the Bus Hold on Data Inputs
- Support Live Insertion and Extraction
- -40°C to +125°C Operating Temperature Range
- Available in a Green TSSOP-48 Package

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
74LVTH16373	TSSOP-48	-40°C to +125°C	74LVTH16373XTS48G/TR	74LVTH16373 XTS48 XXXXX	Tape and Reel, 2500

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS (1)

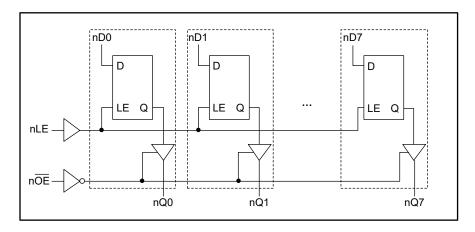
Supply Voltage, V _{CC}	
Input Voltage, V _I ⁽²⁾	0.5V to 7V
Output Voltage, V _O ⁽²⁾	
High-Impedance State	0.5V to 7V
High-State or Low-State0.5V to N	$MIN (7V, V_{CC} + 0.5V)$
Input Clamping Current, $I_{IK}(V_I < 0V)$	50mA
Output Clamping Current, $I_{OK}(V_O < 0V)$	50mA
Output Current, Io	
High-State	64mA
Low-State	128mA
Supply Current, I _{CC}	128mA
Ground Current, I _{GND}	256mA
Junction Temperature (3)	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	7000V
CDM	1000V

RECOMMENDED OPERATING CONDITIONS

COMPINIONO
2.7V to 3.6V
0V to 5.5V
0V to 5.5V
0V to V _{CC}
32mA
64mA
10ns/V (MAX)
40°C to +125°C

OVERSTRESS CAUTION

- Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.
- 2. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.
- 3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

LOGIC DIAGRAM

FUNCTION TABLE

CC	ONTROL INP	UT	INTERNAL	OUTPUT
nOE	nLE	nDn	REGISTER	nQn
L	Н	L	L	L
L	Н	Н	Н	Н
L	L	I	L	L
L	L	h	Н	Н
Н	L	I	L	Z
Н	L	h	Н	Z

H = High Voltage Level


L = Low Voltage Level

h = High Voltage Level One Set-Up Time Prior to the High-to-Low LE Transition

I = Low Voltage Level One Set-Up Time Prior to the High-to-Low LE Transition

Z = High-Impedance State

PIN CONFIGURATION

TSSOP-48

PIN DESCRIPTION

PIN NAME		FUNCTION
47, 46, 44, 43, 41, 40, 38, 37	1D0, 1D1, 1D2, 1D3, 1D4, 1D5, 1D6, 1D7	Data Inputs.
36, 35, 33, 32, 30, 29, 27, 26	2D0, 2D1, 2D2, 2D3, 2D4, 2D5, 2D6, 2D7	Data Inputs.
1, 24	1 0 E, 2 0 E	Output Enable Inputs (Active Low).
48, 25	1LE, 2LE	Latch Enable Inputs (Active High).
2, 3, 5, 6, 8, 9, 11, 12	1Q0, 1Q1, 1Q2, 1Q3, 1Q4, 1Q5, 1Q6, 1Q7	Data Outputs.
13, 14, 16, 17, 19, 20, 22, 23	2Q0, 2Q1, 2Q2, 2Q3, 2Q4, 2Q5, 2Q6, 2Q7	Data Outputs.
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground.
7, 18, 31, 42	V _{CC}	Supply Voltage.

ELECTRICAL CHARACTERISTICS

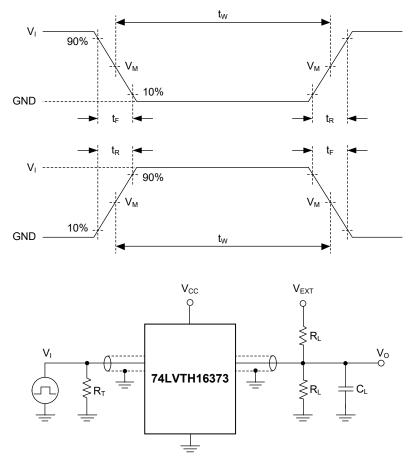
(Full = -40°C to +125°C, all typical values are measured at V_{CC} = 3.3V and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		TEMP	MIN	TYP	MAX	UNITS
Input Clamping Voltage	V _{IK}	V _{CC} = 2.7V, I _{IK} = -18mA		Full	-1.2	-0.78		V
High-Level Input Voltage	V _{IH}	V _{CC} = 2.7V to 3.6V		Full	2			V
Low-Level Input Voltage	V _{IL}	V _{CC} = 2.7V to 3.6V		Full			0.8	V
		$I_{OH} = -100 \mu A$, $V_{CC} = 2.7 V$ to	3.6V	Full	V _{CC} - 0.05	V _{CC} - 0.001		
High-Level Output Voltage	V _{OH}	$I_{OH} = -8mA, V_{CC} = 2.7V$		Full	2.45	2.6		V
		$I_{OH} = -32 \text{mA}, V_{CC} = 3.0 \text{V}$		Full	2.1	2.65		
		V _{CC} = 2.7V	I _{OL} = 100μA	Full		0.001	0.05	
		V _{CC} - 2.7 V	I _{OL} = 24mA	Full		0.15	0.28	
Low-Level Output Voltage	V_{OL}		I _{OL} = 16mA	Full		0.1	0.18	V
		V _{CC} = 3.0V	I _{OL} = 32mA	Full		0.2	0.36	
			I _{OL} = 64mA	Full		0.4	0.55	
Power-Up Low-Level Output Voltage (1)	V _{OL_PU}	$V_{CC} = 3.6V, I_{OL} = 1mA, V_{I} =$	V _{CC} or GND	Full		5	50	mV
	I _I	Control pins, V _{CC} = 3.6V, V _I	Full		±0.01	±1		
		Control pins, V _{CC} = 0V or 3.	Full		0.01	5		
Input Leakage Current		Input data pins (2), V _{CC} = 0V	or 3.6V, V _I = 5.5V	Full		0.4	5	μA
		Input data pins ⁽²⁾ , V _{CC} = 3.6V, V _I = V _{CC}		Full		0.3	2	
		Input data pins (2), V _{CC} = 3.6	Full	-2	-0.01			
0,501,01,00	l _{oz}	.,	V _O = 3.0V	Full		0.01	2	μА
Off-State Output Current		V _{CC} = 3.6V	V _O = 0.5V	Full	-2	-0.01		
Output Leakage Current	I _{LO}	Output in high-state when $V_0 = 5.5V$, $V_{CC} = 3.0V$		Full		1	30	μA
Power-Up/Down Output Current	I _{O_PU/PD}	$V_{CC} \le 1.2V$, $V_{O} = 0.5V$ to V_{C} $n\overline{OE} = don't care$	$_{CC}$, V_{I} = GND or V_{CC} ,	+25°C		0.01	10	μA
Power-Off Leakage Current	I _{OFF}	$V_{CC} = 0V$, V_I or $V_O = 0V$ to 5	5.5V	Full		0.01	10	μA
		V _{CC} = 3.6V,	Outputs high	Full		12	80	
Supply Current	I _{CC}	$V_I = GND \text{ or } V_{CC},$	Outputs low	Full		12	80	μΑ
		I _O = 0A	Outputs disabled (3)	Full		12	80	1
Additional Supply Current ⁽⁴⁾	ΔI_{CC}	Per input pin, V_{CC} = 3.0V to V_{CC} - 0.6V, other inputs at \		Full		0.2	200	μA
Input Capacitance	Cı	Input pins, $V_1 = 0V$ or 3.0V		+25°C		6		pF
Output Capacitance	Co	Output pins nQn, outputs disabled, V _o = 0V or V _{cc}		+25°C		9		pF
Bus Hold Low Current	I _{BHL}	V _{CC} = 3.0V, V _I = 0.8V		Full	50	100		μΑ
Bus Hold High Current	I _{BHH}	$V_{CC} = 3.0V, V_1 = 2.0V$		Full		-130	-75	μΑ
Bus Hold Low Overdrive Current (5)	I _{BHLO}	Input data pins, V _I = 0V to 3	3.6V, V _{CC} = 3.6V	Full	500	200		μΑ
Bus Hold High Overdrive Current (5)	I _{BHHO}	Input data pins, V _I = 0V to 3	3.6V, V _{CC} = 3.6V	Full		-280	-500	μA

NOTES:

- 1. The data must not be loaded into the latches after applying power to get valid test results.
- 2. Other pins must be tied to Vcc or GND and should not be floating.
- 3. I_{CC} is measured with outputs pulled to V_{CC} or GND.
- 4. It is the increase in supply current for per input at the specified voltage level except Vcc or GND.
- 5. It is the minimum overdrive current required to switch the input from one state to another.

DYNAMIC CHARACTERISTICS


(For test circuit, see Figure 1. All typical values are measured at V_{CC} = 3.3V and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS			MIN (1)	TYP	MAX (1)	UNITS	
Lourte High Propagation Delay		nDn to nOn ooo Figure 2	V _{CC} = 2.7V	+25°C		3.6	8.5		
Low to High Propagation Delay	t _{PLH}	nDn to nQn, see Figure 2	$V_{CC} = 3.0V \text{ to } 3.6V$	+25°C	0.5	3.4	7.2	ns	
Lligh to Law Propagation Dolov	4	nDn to nQn, see Figure 2	V _{CC} = 2.7V	+25°C		3.2	6.2		
High to Low Propagation Delay	t _{PHL}	non to non, see Figure 2	$V_{CC} = 3.0V \text{ to } 3.6V$	+25°C	0.5	3.0	5.6	ns	
Low to High Propagation Delay		nLE to nQn, see Figure 3	V _{CC} = 2.7V	+25°C		3.8	8.8	20	
Low to High Propagation Delay	t _{PLH}	ILE to fight, see Figure 3	$V_{CC} = 3.0V \text{ to } 3.6V$	+25°C	0.5	3.6	7.5	ns	
High to Low Propagation Delay	+	nLE to nQn, see Figure 3	V _{CC} = 2.7V	+25°C		3.4	6.0	ne	
Inigit to Low Propagation Delay	t _{PHL}	ILE to fight, see Figure 3	$V_{CC} = 3.0V \text{ to } 3.6V$	+25°C	0.5	3.2	5.8	ns	
Off-State to High Propagation Delay	+	nOE to nQn, see Figure 4	V _{CC} = 2.7V	+25°C		4.2	9.4	20	
On-State to high Propagation Delay	t _{PZH}	NOE to non, see Figure 4	$V_{CC} = 3.0V \text{ to } 3.6V$	+25°C	0.5	4.0	7.8	ns	
Off-State to Low Propagation Delay	t _{PZL}	nOE to nQn, see Figure 4	V _{CC} = 2.7V	+25°C		4.0	6.5	- ns	
			$V_{CC} = 3.0V \text{ to } 3.6V$	+25°C	0.5	3.8	6.2		
Llink to Off State Draw a notice Delay	+	nOE to nQn, see Figure 4	V _{CC} = 2.7V	+25°C		4.4	7.6	- ns	
High to Off-State Propagation Delay	t _{PHZ}		$V_{CC} = 3.0V \text{ to } 3.6V$	+25°C	0.5	4.0	7.0		
Low to Off-State Propagation Delay	t _{PLZ}	nOE to nQn, see Figure 4	V _{CC} = 2.7V	+25°C		4.2	6.8	- ns	
Low to Oil-State Propagation Delay		noe to non, see Figure 4	$V_{CC} = 3.0V \text{ to } 3.6V$	+25°C	0.5	4.0	6.5		
High Set-Up Time	+	nDn to nLE, see Figure 5	V _{CC} = 2.7V	+25°C	2			ns	
riigir Set-Op Tillie	t _{suн}	IIDII to IILL, see Figure 5	$V_{CC} = 3.0V \text{ to } 3.6V$	+25°C	2				
Low Set-Up Time	+	nDn to nLE, see Figure 5	V _{CC} = 2.7V	+25°C	2			20	
Low Set-Op Time	t _{suL}	non to file, see Figure 5	$V_{CC} = 3.0V \text{ to } 3.6V$	+25°C	2			ns	
High Hold Time	+	nDn to nLE, see Figure 5	V _{CC} = 2.7V	+25°C	1.2			20	
Inigit hold fillie	t _{HH}	IIDII to IILE, see Figure 5	$V_{CC} = 3.0V \text{ to } 3.6V$	+25°C	1.2			ns	
Low Hold Time		nDn to nl E ago Figuro F	V _{CC} = 2.7V	+25°C	1.2				
LOW HOIG TIME	t _{HL}	nDn to nLE, see Figure 5	$V_{CC} = 3.0V \text{ to } 3.6V$	+25°C	1.2			ns	
High Dulco Width	+	nLE, see Figure 3	V _{CC} = 2.7V	+25°C	3.3			ne	
High Pulse Width	t _{WH}	IILE, See Figure 3	$V_{CC} = 3.0V \text{ to } 3.6V$	+25°C	3.3			ns	

NOTE:

1. Specified by design and characterization; not production tested.

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

R_L: Load resistance.

C_L: Load capacitance (includes jig and probe).

 R_T : Termination resistance (equals to output impedance Z_O of the pulse generator).

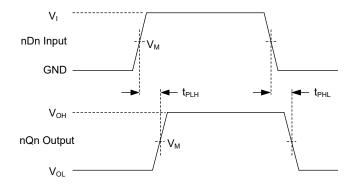
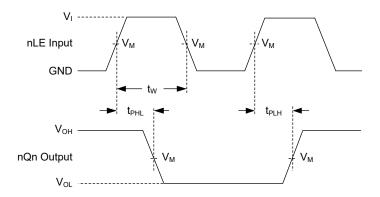

V_{EXT}: External voltage used to measure switching time.

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

SUPPLY VOLTAGE	INPUT				LOAD		V _{EXT}			
V _{CC}	Vı	fı	t _w	t _R , t _F	CL	R _L	t _{PHZ} , t _{PZH} t _{PLZ} , t _{PZL}		t _{PLH} , t _{PHL}	
2.7V to 3.6V	2.7V	≤ 10MHz	500ns	≤ 2.5ns	50pF	500Ω	GND	6V	Open	

WAVEFORMS

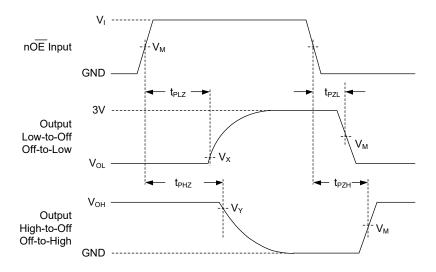


Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 2. Input (nDn) to Output (nQn) Propagation Delays


Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. Latch Enable Input Pulse Width and the Latch Enable Input to Output Propagation Delays

WAVEFORMS (continued)

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

nDn Input
GND

V₁

v₂

v₃

v₄

v₄

v₇

nLE Input
GND

Figure 4. Enable and Disable Times

Test conditions are given in Table 1.

Measurement points are given in Table 2.

The shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 5. Data Set-Up and Hold Times for the nDn Input to the nLE Input

Table 2. Measurement Points

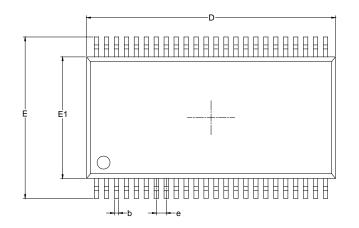
SUPPLY VOLTAGE	INF	TUT	OUTPUT					
V _{cc}	V _I V _M ⁽¹⁾		V _M	V _X	V _Y			
2.7V to 3.6V	2.7V	1.5V	1.5V	V _{OL} + 0.3V	V _{OH} - 0.3V			

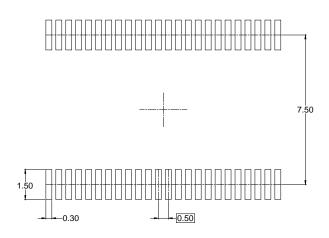
NOTE:

1. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 2.5ns.

3.3V, 16-Bit D-Type Transparent Latch with 3-State Outputs

74LVTH16373

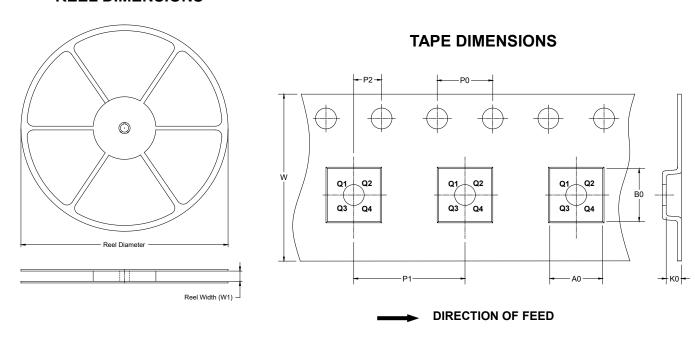

REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

NOVEMBER 2021 – REV.A to REV.A.1	Page
Updated HBM value in Absolute Maximum Ratings section	2
Changes from Original (MARCH 2021) to REV.A	Page
Changed from product preview to production data	All

PACKAGE OUTLINE DIMENSIONS TSSOP-48

RECOMMENDED LAND PATTERN (Unit: mm)

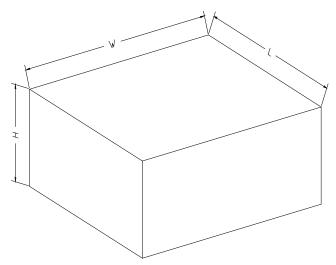

Symbol	D	imensions In Millimete	ers			
Symbol	MIN	MOD	MAX			
Α			1.20			
A1	0.05	0.10	0.15			
A2	0.85	0.95	1.05			
b	0.18		0.26			
С	0.15		0.19			
D	12.40	12.50	12.60			
Е	7.90	8.10	8.30			
E1	6.00	6.10	6.20			
е		0.50 BSC				
L	1.00 REF					
L1	0.45		0.75			
θ	0°		8°			

- NOTES:

 1. Body dimensions do not include mode flash or protrusion.
- 2. This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP-48	13"	24.4	8.60	13.00	1.80	4.0	12.0	2.0	24.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
13"	386	280	370	5