

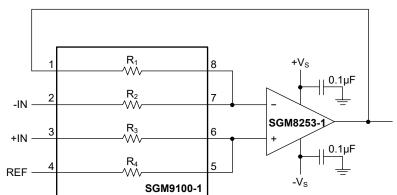
# SGM9100 Quad Matched Resistor Network

# **GENERAL DESCRIPTION**

The SGM9100 consists of four resistors that have great matching characteristics over the whole temperature range. The device can be used in the differential amplifier due to the specified resistor matching network. This improved matching feature ensures that the CMRR performance is twice better than that of resistors that are matched separately.

The SGM9100 allows independent access and biasing of all four resistors, so it is a flexible and convenient option for all the applications, which can take advantage of these matched resistors.

The quad matched resistor network offers accurate ratio stability, making the SGM9100 suitable for the applications requiring high precision, such as differential amplifiers, bridge circuits and voltage references.


The SGM9100 is available in a Green MSOP-8 (Exposed Pad) package. It is rated over the -40°C to +85°C operating temperature range.

# **FEATURES**

- Excellent Matching: 0.01% Matching
- Resistor Matching Ratio Temperature Drift: 0.24ppm/°C (TYP)
- Absolute Resistor Value Temperature Drift: 5ppm/°C (TYP)
- Resistor Matching Ratio Long-Term Drift: 15ppm at 2000h
- Operating Voltage Range: ±75V
- Absolute Maximum Voltage Range: ±80V
- -40°C to +85°C Operating Temperature Range
- Available in a Green MSOP-8 (Exposed Pad) Package

# **APPLICATIONS**

Precision Differential Amplifier Precision Resistor Divider for Voltage Reference Precision Current and Voltage Summing/Subtracting



### Figure 1. Typical Application Circuit

SG Micro Corp

### AUGUST 2024 - REV. A

# TYPICAL APPLICATION


## **PACKAGE/ORDERING INFORMATION**

| MODEL     | PACKAGE<br>DESCRIPTION  | SPECIFIED<br>TEMPERATURE<br>RANGE | ORDERING<br>NUMBER | PACKAGE<br>MARKING       | PACKING<br>OPTION   |
|-----------|-------------------------|-----------------------------------|--------------------|--------------------------|---------------------|
| SGM9100-1 | MSOP-8<br>(Exposed Pad) | 0°C to +70°C                      | SGM9100-1ZPMS8G/TR | SGM0GH<br>ZPMS8<br>XXXXX | Tape and Reel, 4000 |
| SGM9100-2 | MSOP-8<br>(Exposed Pad) | 0°C to +70°C                      | SGM9100-2ZPMS8G/TR | SGM0Y1<br>ZPMS8<br>XXXXX | Tape and Reel, 4000 |
| SGM9100-3 | MSOP-8<br>(Exposed Pad) | 0°C to +70°C                      | SGM9100-3ZPMS8G/TR | SGM0Y2<br>ZPMS8<br>XXXXX | Tape and Reel, 4000 |
| SGM9100-5 | MSOP-8<br>(Exposed Pad) | 0°C to +70°C                      | SGM9100-5ZPMS8G/TR | SGM0Y3<br>ZPMS8<br>XXXXX | Tape and Reel, 4000 |

## MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

### XXXXX



Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

## **ABSOLUTE MAXIMUM RATINGS**

| Total Voltage (between any pair of pins) <sup>(1)</sup> | ±80V           |
|---------------------------------------------------------|----------------|
| Power Dissipation (any resistor) <sup>(2)</sup>         | 800mW          |
| Package Thermal Resistance                              |                |
| MSOP-8 (Exposed Pad), θ <sub>JA</sub>                   | 52°C/W         |
| MSOP-8 (Exposed Pad), θ <sub>JB</sub>                   | 26.9°C/W       |
| MSOP-8 (Exposed Pad), $\theta_{JC (TOP)}$               | 63.3°C/W       |
| MSOP-8 (Exposed Pad), θ <sub>JC (BOT)</sub>             | 12.8°C/W       |
| Junction Temperature                                    | +150°C         |
| Storage Temperature Range                               | 65°C to +150°C |
| Lead Temperature (Soldering, 10s)                       | +260°C         |
| ESD Susceptibility                                      |                |
| HBM (SGM9100-1)                                         | 1000V          |
| HBM (SGM9100-2/3/5)                                     | 500V           |
| CDM                                                     | 1000V          |
|                                                         |                |

#### NOTES:

1. Do not apply a voltage difference greater than the absolute maximum ratings between any two pins. This applies to any resistor, any pin relative to the package's exposed pad, and any pair of pins that are not connected.

2. When the ambient temperature is high, the maximum power dissipation must be lowered to prevent the junction temperature from exceeding the absolute maximum ratings.

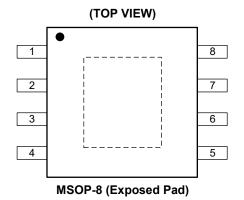
## **RECOMMENDED OPERATING CONDITIONS**

| Operating Temperature Range40°C | to +85°C |
|---------------------------------|----------|
| Specified Temperature Range0°C  | to +70°C |

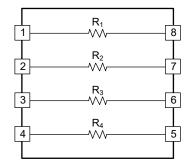
## **OVERSTRESS CAUTION**

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

## ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

### DISCLAIMER


SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.



# **PIN CONFIGURATION**



## FUNCTIONAL BLOCK DIAGRAM



## **AVAILABLE OPTIONS**

| Part Number | R <sub>2</sub> = R <sub>3</sub> | R <sub>1</sub> = R <sub>4</sub> | Resistor Ratio |
|-------------|---------------------------------|---------------------------------|----------------|
| SGM9100-1   | 10kΩ                            | 10kΩ                            | 1:1            |
| SGM9100-2   | 100kΩ                           | 100kΩ                           | 1:1            |
| SGM9100-3   | 10kΩ                            | 100kΩ                           | 1:10           |
| SGM9100-5   | 1ΜΩ                             | 1ΜΩ                             | 1:1            |



# **ELECTRICAL CHARACTERISTICS**

(T<sub>A</sub> = 0°C to +70°C, typical values are at T<sub>A</sub> = +25°C, unless otherwise noted.)

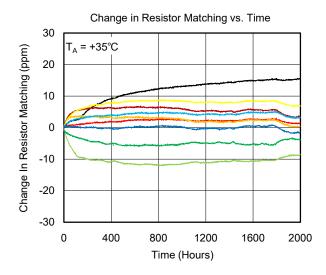
| PARAMETER                                           | SYMBOL                | CONDITIONS                                    | MIN | TYP                        | MAX    | UNITS      |
|-----------------------------------------------------|-----------------------|-----------------------------------------------|-----|----------------------------|--------|------------|
| Resistor Matching Ratio                             | ΔR/R                  | $T_A = +25^{\circ}C$                          |     | ±0.0                       |        | %          |
| (Any Resistor to Any Other Resistor)                | ΔR/R                  | $T_A = 0^{\circ}C$ to +70°C                   |     |                            | ±0.01  | %          |
| Matching for CMRR <sup>(1)</sup>                    | $(\Delta R/R)_{CMRR}$ | $T_A = 0^{\circ}C$ to +70°C                   |     |                            | ±0.005 | %          |
| Resistor Matching Ratio<br>Temperature Drift        | (ΔR/R)/ΔT             | $T_A = 0^{\circ}C$ to +70°C                   |     | ±0.24                      | ±1     | ppm/°C     |
| Resistor Voltage Coefficient                        |                       | $T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ |     | 0.1                        |        | ppm/V      |
| Excess Current Noise (2)                            |                       |                                               |     | < -55                      |        | dB         |
| Absolute Resistor Tolerance                         | ΔR                    | 0.01% matching, $T_A = 0^{\circ}C$ to +70°C   |     |                            | ±7.5   | %          |
| Distributed Capacitance                             |                       | Resistor to exposed pad                       |     | 5                          |        | ~ <b>F</b> |
|                                                     |                       | Resistor to resistor                          |     | 2                          |        | pF         |
| Absolute Resistor Value<br>Temperature Drift        | ΔR/ΔT                 | $T_A = 0^{\circ}C$ to +70°C                   |     | 5                          | 10     | ppm/°C     |
| Resistor Matching Ratio                             |                       | T <sub>A</sub> = +35°C, 2000h, 10mW           |     | 15                         |        |            |
| Long-Term Drift                                     |                       | T <sub>A</sub> = +70°C, 1000h, 10mW           |     | ±0.24       0.1       <-55 |        | ppm        |
| Resistor Matching Ratio<br>Moisture Resistance      |                       | T <sub>A</sub> = +85°C, 85%R.H., 168h         |     | 4                          |        | ppm        |
| Resistor Matching Ratio<br>Thermal Shock/Hysteresis |                       | $T_A = -50^{\circ}C$ to +150°C, 5 cycles      |     | 4                          |        | ppm        |
| Resistor Matching Ratio IR Reflow                   |                       | T <sub>A</sub> = +25°C to +260°C, 3 cycles    |     | 4                          |        | ppm        |
| Resistor Matching Ratio<br>Accelerated Shelf Life   |                       | T <sub>A</sub> = +150°C, 1000h                |     | 5                          |        | ppm        |
| Harmonic Distortion                                 |                       | $20V_{P-P}$ , 1kHz, difference amplifier      |     | -120                       |        | dBc        |
| Shelf Life                                          |                       | T <sub>A</sub> = +25℃, unbiased, 1 year       |     | TBD                        |        | ppm        |

#### NOTES:

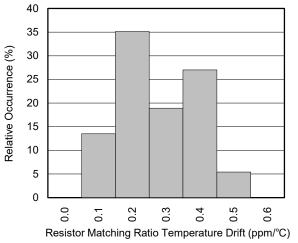
1. When specific resistors are used in a differential configuration of  $R_1/R_2$  and  $R_4/R_3$  with the SGM9100, the error produced by it is quantified by  $(\Delta R/R)_{CMRR}$  (Matching of CMRR), whose equation is as follows. The Typical Application Circuits section shows examples of differential amplifier and instrumentation amplifier.

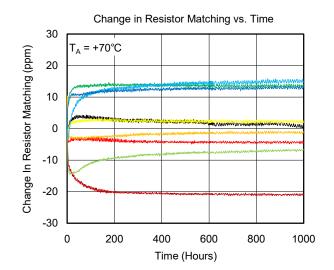
$$(\Delta R/R)_{CMRR} = \frac{1}{2} \times \left(\frac{R_2}{R_1} - \frac{R_3}{R_4}\right) \times \left(\frac{R_1}{R_2}\right)$$

The effect of the resistors on CMRR can be calculated as follows.


CMRR = 
$$(\Delta R/R)_{CMRR} \times \left(\frac{4 \times \frac{R_2}{R_1}}{2 + \frac{R_2}{R_1} + \frac{R_3}{R_4}}\right)$$

When the resistor ratio is 1:1 for SGM9100 options, the effect of the resistors on CMRR can be approximated by: CMRR  $\approx$  ( $\Delta$ R/R)<sub>CMRR</sub>.


2. This parameter is only applicable to the SGM9100-1 and SGM9100-2.




# **TYPICAL PERFORMANCE CHARACTERISTICS**

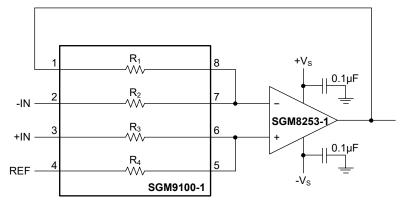








# **APPLICATION INFORMATION**


### **Matching Specification**

The definition of maximum resistor matching ratio for SGM9100 is the mismatch between the largest of the four resistors and the smallest of the four resistors. Table 1 provides detailed calculation example.

| Table 1. | SGM9100 | Resistance | Matching | Rate | Calculation Example |
|----------|---------|------------|----------|------|---------------------|
|          |         |            |          |      |                     |

| R <sub>1</sub> | R <sub>2</sub> | R₃        | R₄        | Max Resistor | Match R₁ | Match R <sub>2</sub> | Match R <sub>3</sub> | Match R₄ | Match R <sub>MAX</sub> |
|----------------|----------------|-----------|-----------|--------------|----------|----------------------|----------------------|----------|------------------------|
| (Ω)            | (Ω)            | (Ω)       | (Ω)       | (Ω)          | (%)      | (%)                  | (%)                  | (%)      | (%)                    |
| 10027.757      | 10027.847      | 10027.695 | 10027.872 | 10027.872    | 0.001147 | 0.000249             | 0.001765             | 0        | 0.001765               |

The differential amplifier application consisting of SGM9100-1 is shown in Figure 2.



#### Figure 2. Differential Amplifier

The equation for calculating the output voltage  $(V_{OUT})$  is as follows.

$$V_{\text{OUT}} = V_{\text{IN+}} \times \frac{R_4}{R_3 + R_4} \times \left(1 + \frac{R_1}{R_2}\right) - V_{\text{IN-}} \times \frac{R_1}{R_2} + V_{\text{REF}} \times \frac{R_3}{R_3 + R_4} \times \left(1 + \frac{R_1}{R_2}\right)$$

Assuming the resistance matching rate is 0.001% and both  $V_{IN+}$  and  $V_{REF}$  are connected to GND, the gain error can be calculated using the following equation.

$$V_{OUT} = -V_{IN-} \times \frac{R_1}{R_2}$$

$$G_{ACTUAL} = \frac{V_{OUT}}{V_{IN-}} = -\frac{R_1}{R_2} = -1.00001$$

$$G_{ERROR} = \frac{G_{ACTUAL} - G_{IDEAL}}{G_{IDEAL}} = \frac{-1.00001 - (-1)}{-1} = 0.00001 = 0.001\%$$

where:

 $G_{ACTUAL}$  and  $G_{IDEAL}$  are the actual gain and ideal gain of the circuit, respectively.  $G_{ERROR}$  is the gain error of the circuit introduced by the resistance matching rate.



# **APPLICATION INFORMATION (continued)**

### **Exposed Pad Package**

The SGM9100 is designed with an exposed pad to reduce internal temperature in high dissipation power applications. This pad is not connected to any other resistor terminal and can be tied to any voltage not exceeding the Absolute Maximum Ratings. Actually, this exposed pad has some parasitic capacitance relative to the resistors, and the parasitic capacitance value is specified in Electrical Characteristics table. Usually, it is better to connect this exposed pad to a quiet ground to reduce system noise and avoid interference.

### **Thermal Considerations**

Each SGM9100 has four resistors. When current flows through these resistors, the chip temperature will rise. In actual applications, to avoid damaging the resistors, the power dissipation of SGM9100 cannot exceed the absolute maximum rating, and the maximum voltage between any pair of pins must be within the absolute maximum rating.

Besides, the SGM9100 thermal resistance coefficient of the package is also show in the Absolute Maximum Ratings section. Users can calculate the junction temperature of the chip based on the thermal resistance coefficient. The following Table 2 shows the detailed calculation method.

#### Table 2. The Junction Temperature Calculation

| Key Parameters                                                                | Values |
|-------------------------------------------------------------------------------|--------|
| The Thermal Resistance Coefficient between Junction to Ambient, $\theta_{JA}$ | 52°C/W |
| Power of Each Resistor                                                        | 250mW  |
| Total Power of SGM9100                                                        | 1W     |
| Ambient Temperature                                                           | +25°C  |
| The Total Temperature Rise                                                    | 52°C   |
| The Junction Temperature Calculation Value                                    | 77°C   |

### ESD

The SGM9100 is designed to tolerate Electrostatic Discharge levels of up to  $\pm 1000V$  under the Human Body Model (HBM) and up to  $\pm 500V$  under the Charged Device Model (CDM). If the ESD exceeds this level in applications, the SGM9100's performance may decrease or even be damaged. In some applications that require high ESD standards, the SGM9100 requires an external protection diode to reduce large ESD strikes. Figure 3 shows two options to protect the SGM9100.

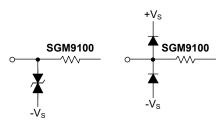



Figure 3. External Protection Circuit



# **TYPICAL APPLICATION CIRCUITS**

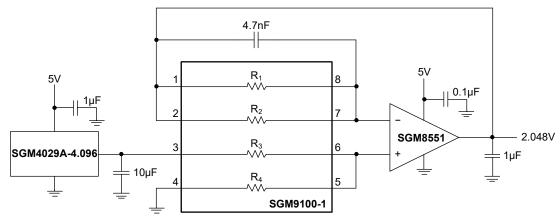



Figure 4. Low Noise Reference Divider with Operational Amplifier Input Bias Current Balancing

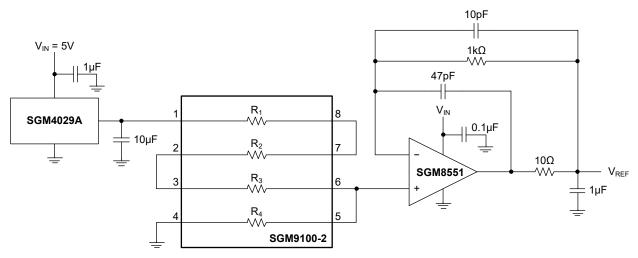
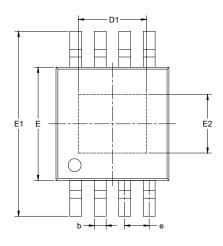
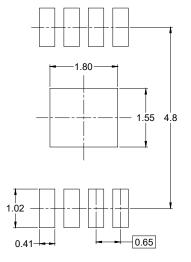



Figure 5. Low Power Voltage Reference Divide-by-4

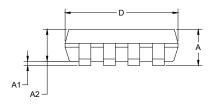
Page

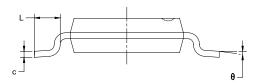
# **REVISION HISTORY**


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


#### Changes from Original (AUGUST 2024) to REV.A

| Changed from product preview to production dataAll |
|----------------------------------------------------|
|----------------------------------------------------|





# PACKAGE OUTLINE DIMENSIONS MSOP-8 (Exposed Pad)



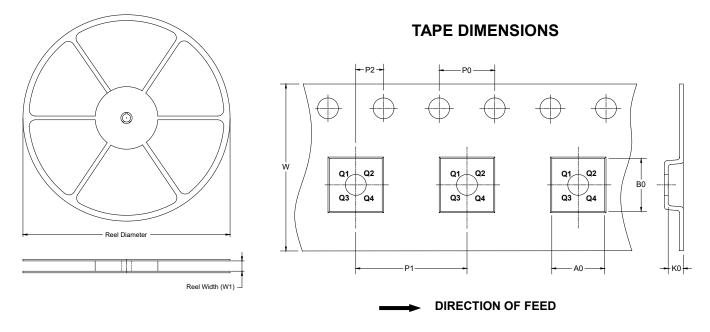


RECOMMENDED LAND PATTERN (Unit: mm)





| Symbol |       | nsions<br>meters | Dimensions<br>In Inches |       |  |
|--------|-------|------------------|-------------------------|-------|--|
|        | MIN   | MAX              | MIN                     | MAX   |  |
| A      | 0.820 | 1.100            | 0.032                   | 0.043 |  |
| A1     | 0.020 | 0.150            | 0.001                   | 0.006 |  |
| A2     | 0.750 | 0.950            | 0.030                   | 0.037 |  |
| b      | 0.250 | 0.380            | 0.010                   | 0.015 |  |
| с      | 0.090 | 0.230            | 0.004                   | 0.009 |  |
| D      | 2.900 | 3.100            | 0.114                   | 0.122 |  |
| D1     | 1.700 | 1.900            | 0.067                   | 0.075 |  |
| e      | 0.65  | BSC              | 0.026                   | BSC   |  |
| E      | 2.900 | 3.100            | 0.114                   | 0.122 |  |
| E1     | 4.750 | 5.050            | 0.187                   | 0.199 |  |
| E2     | 1.450 | 1.650            | 0.057                   | 0.065 |  |
| L      | 0.400 | 0.800            | 0.016                   | 0.031 |  |
| θ      | 0°    | 6°               | 0°                      | 6°    |  |


NOTES:

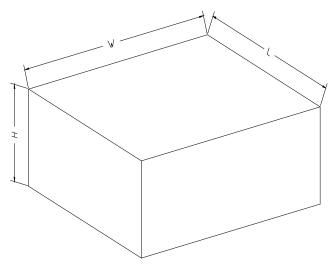
Body dimensions do not include mode flash or protrusion.
 This drawing is subject to change without notice.



# TAPE AND REEL INFORMATION

### **REEL DIMENSIONS**




NOTE: The picture is only for reference. Please make the object as the standard.

## KEY PARAMETER LIST OF TAPE AND REEL

| Package Type            | Reel<br>Diameter | Reel Width<br>W1<br>(mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P0<br>(mm) | P1<br>(mm) | P2<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-------------------------|------------------|--------------------------|------------|------------|------------|------------|------------|------------|-----------|------------------|
| MSOP-8<br>(Exposed Pad) | 13″              | 12.4                     | 5.20       | 3.30       | 1.50       | 4.0        | 8.0        | 2.0        | 12.0      | Q1               |



## **CARTON BOX DIMENSIONS**



NOTE: The picture is only for reference. Please make the object as the standard.

## **KEY PARAMETER LIST OF CARTON BOX**

| Reel Type | Length<br>(mm) | Width<br>(mm) | Height<br>(mm) | Pizza/Carton |        |
|-----------|----------------|---------------|----------------|--------------|--------|
| 13″       | 386            | 280           | 370            | 5            | DD0002 |

