

SGM41600 I²C Controlled 6A Single-Cell Switched-Capacitor Fast Charger with Bypass Mode and ADC

GENERAL DESCRIPTION

The SGM41600 is an efficient 6A switched-capacitor battery charging device with I²C control that can operate either in charge-pump voltage divider mode or in bypass mode. It can charge single-cell Li-Ion or Li-polymer battery in a wide 3.3V to 11.5V input voltage range (VBUS) from smart wall adapters or power banks. The switched-capacitor architecture is optimized for 50% duty cycle to cut the input current to one-half of the battery current and reduce the wiring drops, losses and temperature rise in the application.

A two-phase switched-capacitor topology is used to reduce the required input capacitors, improve efficiency and minimize the output ripple. Necessary protection features for safe charging performance including input over-voltage protection by external OVPFET (Q_{OVP}) and input reverse blocking (using an internal NFET) are provided.

A fast analog-to-digital converter (ADC) with 12-bit effective resolution is also included to measure die temperature, bus voltage, bus current, battery voltage and battery current (5 channels) for battery management of the charge process.

The SGM41600 is available in a Green WLCSP- 2.6×2.6 -36B package and can operate in the -40°C to +85°C ambient temperature range.

FEATURES

- Efficiency Optimized Switched-Capacitor Architecture
 - Up to 6A Output Current
 - 3.3V to 11.5V Input Voltage Range
 - 200kHz to 1.5MHz Switching Frequency Setting
 - Up to 97% Voltage Divider Mode Efficiency (when V_{BAT} = 4V, I_{BAT} = 3A)
- Comprehensive Integrated Protection Features
 - External OVP Control and Regulation
 - Input Over-Voltage Protection (BUS_OVP)
 - Input Short-Circuit Protection (BUS_SC)
 - Input Over-Current Protection (IBUS_OCP)
 - Input Under-Current Protection (IBUS_UCP)
 - Battery Over-Voltage Protection (BAT_OVP)
 - Output Short-Circuit Protection (VOUT_SC)
 - Battery Over-Current Protection (IBAT_OCP)
 - CFLY Short-Circuit Protection (CFLY_SC)
 - Converter Over-Current Protection (CONV_OCP)
 - Die Over-Temperature Protection (TDIE_OTP)
- 5-Channel 12-Bit (Effective) ADC Converter
 - VBUS, IBUS, VBAT, IBAT, TDIE Monitoring

APPLICATIONS

Smart Phone, Tablet PC

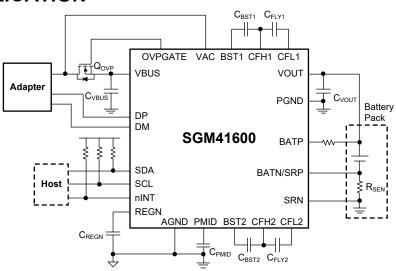
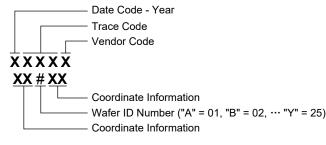


Figure 1. Typical Application Circuit


TYPICAL APPLICATION

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM41600	WLCSP-2.6×2.6-36B	-40°C to +85°C	SGM41600YG/TR	SGM 41600 XXXXX XX#XX	Tape and Reel, 5000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code. XX#XX = Coordinate Information and Wafer ID Number.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

VAC (Converter Not Switching)0.3V to 30V	1
OVPGATE0.3V to 30V	1
OVPGATE to VBUS0.3V to 6V	1
VBUS, PMID (Converter Not Switching)0.3V to 22V	1
BST1, BST20.3V to (PMID + 5.5V))
VOUT	1
CFH1, CFH2 to VOUT0.3V to 6V	
CFL1, CFL20.3V to 6V	1
DP, DM, REGN, BATP, SDA, SDL, nINT0.3V to 6V	1
BATN/SRP, SRN0.3V to 1.8V	1
SRP to SRN0.5V to 0.5V	1
Package Thermal Resistance	
WLCSP-2.6×2.6-36B, θ _{JA}	1
Junction Temperature+150°C	;
Storage Temperature Range65°C to +150°C	;
Lead Temperature (Soldering, 10s)+260°C	;
ESD Susceptibility	
HBM	1
CDM	1

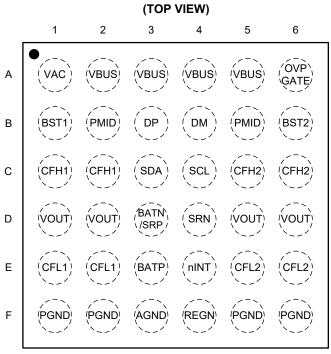
ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

RECOMMENDED OPERATING CONDITIONS

3.3V to 18V
8V to 23V
3.3V to 5.5V
5.5V to 11.5V
3V to 5V
0A to 4A
0A to 6A
0V to 5.5V
0V to 5.5V
0V to 1.5V
0.05V to 0.05V
0V to 5V
40°C to +125°C

OVERSTRESS CAUTION


Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

WLCSP-2.6×2.6-36B

I²C Controlled Single-Cell 6A Switched-Capacitor Fast Charger with Bypass Mode and ADC

PIN DESCRIPTION

PIN	NAME	TYPE ⁽¹⁾	FUNCTION			
A1	VAC	AI	Adapter DC Voltage Sense Input Pin. Connect it to the drain of the external OVPFET (Q _{OVP}).			
A2, A3, A4, A5	VBUS	Р	Device Power Input Pins. Connect a $10\mu F$ or larger ceramic capacitor between VBUS and PGND pins as close to the device as possible.			
A6	OVPGATE	AO	External N-FET Gate Control Pin. Connect to the gate of the external OVPFET (Q_{OVP}).			
B1	BST1	Р	Phase 1 Bootstrap Pin. It is the BST pin to supply Q_{CH1} gate driver. Use a 0.1µF or larger MLCC capacitor from this pin to CFH1 pin.			
B2, B5	PMID	Р	Power Stage Supply Input Pins. Bypass them with at least $10\mu F$ ceramic capacitor to PGND.			
B3	DP	AIO	USB Communication Interface Positive Line. Connect to the USB D+ data line.			
B4	DM	AIO	USB Communication Interface Negative Line. Connect to the USB D- data line.			
B6	BST2	Р	Phase 2 Bootstrap Pin. It is the BST pin to supply Q _{CH2} gate driver. Use a 0.1µF or larger ML capacitor from this pin to CFH2 pin.			
C1, C2	CFH1	Р	Phase 1 Flying Capacitor Positive Pins. Connect two 22µF or larger parallel capacitors betw CFH1 and CFL1 pins as close as possible to the device.			
C3	SDA	DIO	I ² C Interface Data Line.			
C4	SCL	DI	I ² C Interface Clock Input Line.			
C5, C6	CFH2	Р	Phase 2 Flying Capacitor Positive Pins. Connect two 22μ F or larger parallel capacitors between CFH2 and CFL2 pins as close as possible to the device.			
D1, D2, D5, D6	VOUT	Р	Output Pins. Connect to the battery pack positive terminal. Two $10\mu F$ capacitors between VOUT and PGND pins are recommended.			
D3	BATN/SRP	AI	Battery Voltage Sensing Negative Input or Battery Current Sensing Positive Input.			
D4	SRN	AI	Battery Current Sensing Negative Input. Place a $5m\Omega$ (R _{SEN}) shunt resistor between SRN and BATN/SRP pins.			
E1, E2	CFL1	Р	Phase 1 Flying Capacitor Negative Pins. Connect two 22μ F or larger parallel capacitors between CFH1 and CFL1 pins as close as possible to the device.			
E3	BATP	AI	Battery Voltage Sensing Positive Input. Connect a 100Ω resistor between BATP and positive terminal of the battery pack.			
E4	nINT	DO	Open-Drain Interrupt Output Pin. Connect a pull-up $10k\Omega$ to the logic high rail. It is normally high but generates a low 256µs pulse when a charge fault occurs to inform the host.			
E5, E6	CFL2	Р	Phase 2 Flying Capacitor Negative Pins. Connect two 22µF or larger parallel capacitors between CFH2 and CFL2 pins as close as possible to the device.			
F1, F2, F5, F6	PGND	Р	Power Ground Pin.			
F3	AGND	Р	Analog Ground Pin (reference for low current signals).			
F4	REGN	AO	Internal 3.3V LDO Output. Connect a 4.7µF MLCC capacitor between this pin and AGND.			

NOTE:

1. P = power, AI = analog input, AO = analog output, AIO = analog input/output, DI = digital input, DO = digital output, DIO = digital input/output.

ELECTRICAL CHARACTERISTICS

(T_J = -40°C to +125°C, typical values are at T_J = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	UNITS
Supply Currents						
VAC Input Quiescent Current (No VBUS or BAT sources)	I _{Q_VAC}	ADC disabled, charge disabled, Q_{OVP} used, VAC OVP activated, V_{VAC} = 12V, V_{VBUS} = 0V, V_{VOUT} = 0V		200	280	μA
VBUS Power Input Quiescent Current ⁽¹⁾	I _{Q_VBUS}	ADC disabled, charge disabled, Q_{OVP} used, $V_{VBUS} = 8V$ ADC enabled, charge enabled, Q_{OVP} used,		50	70	μA
Current		$V_{VBUS} = 8V > 2 \times V_{VOUT}$, $f_{SW} = 500$ kHz		10		mA
Retter Cally Ouisses at Ourset		ADC disabled, charge disabled, VBUS not present, $V_{VAC} = 0V$, $V_{VOUT} = 4.5V$		10	30	μA
Battery-Only Quiescent Current	Ια_νουτ	ADC enabled, charge disabled, (after 1-shot ADC conversion complete), VBUS not present, $V_{VAC} = 0V, V_{VOUT} = 4.5V$		10		μA
VBUS Present Rising Threshold	$V_{\text{BUS}_\text{PRESENT}_R}$	V _{VBUS} rising		3	3.3	V
VBUS Present Hysteresis	$V_{\text{BUS}_\text{PRESENT}_\text{HYS}}$			240		mV
External OVP Control						
VAC Present Rising Threshold	$V_{\text{VAC}_\text{PRESENT}_R}$	V _{VAC} rising		3	3.35	V
VAC Present Hysteresis	$V_{\text{VAC}_\text{PRESENT}_\text{HYS}}$			160		mV
VAC Present Rising Threshold Deglitch Time ⁽¹⁾	t _{vac_in_deg}	V_{BAT} = 4V, deglitch between V_{VAC} rising above V_{VAC} present _R and starting external OVPFET turn-on		20		ms
VAC OVP Rising Threshold	V_{VAC_OVP}	l ² C programmable, 1V per step, 12V by default	4		19	V
VAC OVP Threshold Accuracy	$V_{\text{VAC}_\text{OVP}_\text{ACC}}$	$V_{VAC_{OVP}} = 5V \text{ or } 12V$	-2.7		3.7	%
VAC OVP Rising Deglitch Time ⁽¹⁾	tvac_ovp_deg	Deglitch between V_{VAC} rising above $V_{VAC_{OVP}}$ and triggering the protection action		100		ns
VBUS Pull-Down Resistor	R_{PD_VBUS}	V _{VBUS} = 2V		1		kΩ
VAC Pull-Down Resistor	R_{PD_VAC}			60	70	Ω
VAC Pull-Down Timeout ⁽¹⁾	t_{VAC_PD}	AC_PDN_EN = 1		400		ms
VBAT Regulation Range	V _{BAT_REG}	l ² C programmable, 50mV per step	V _{BAT_OVP} - 200mV		V _{BAT_OVP} - 50mV	
VBAT Regulation Accuracy	VBAT REG ACC	$V_{BAT_{REG}} = 4.3V, T_{J} = +25^{\circ}C$	-0.4		0.4	%
ç ,	• BAT_REG_ACC	$V_{BAT_{REG}} = 4.3V, T_{J} = -40^{\circ}C \text{ to } +125^{\circ}C$	-0.8		0.8	
VBAT Regulation Entry Deglitch Time ⁽¹⁾	tvbat_in_deg	Deglitch between V_{BAT} rising above $V_{BAT_{REG}}$ (entering regulation mode), and flag bit set to 1		500		μs
IBAT Regulation Range	I _{BAT_REG}	l ² C programmable, 100mA per step	I _{ват_оср} - 500mA		I _{ват_оср} - 200mA	
IBAT Regulation Accuracy	I _{BAT_REG_ACC}	I_{BAT} = 4A, R_{SEN} = 5m Ω , T_J = +25°C	-5.5		5	%
IBAT Regulation Entry Deglitch Time ⁽¹⁾	t _{IBAT_IN_DEG}	Deglitch between I_{BAT} rising above $I_{\text{BAT},\text{REG}}$ (entering regulation mode) and flag bit set to 1		500		μs
Switched Capacitor Chargers						
VBUS to VOUT Resistance	R _{DROPOUT}	Bypass mode		30	45	mΩ
$R_{\mbox{\tiny DSON}}$ of Reverse Blocking FET	R_{DS_QRB}	V_{VBUS} = 10V, V_{VOUT} = 5V, I_{BAT} = 1A		10	18	mΩ
R_{DSON} of $Q_{\text{CH1/2}}$	R _{DS_QCH}	V_{VBUS} = 10V, V_{VOUT} = 5V, I_{BAT} = 1A		26		mΩ
R_{DSON} of $Q_{\text{DH1/2}}$	R _{DS_QDH}	V_{VBUS} = 10V, V_{VOUT} = 5V, I_{BAT} = 1A		14		mΩ
R _{DSON} of Q _{CL1/2}	R _{DS_QCL}	V_{VBUS} = 10V, V_{VOUT} = 5V, I_{BAT} = 1A		14		mΩ
R _{DSON} of Q _{DL1/2}	R _{DS_QDL}	$V_{VBUS} = 10V, V_{VOUT} = 5V, I_{BAT} = 1A$		14		mΩ

ELECTRICAL CHARACTERISTICS (continued)

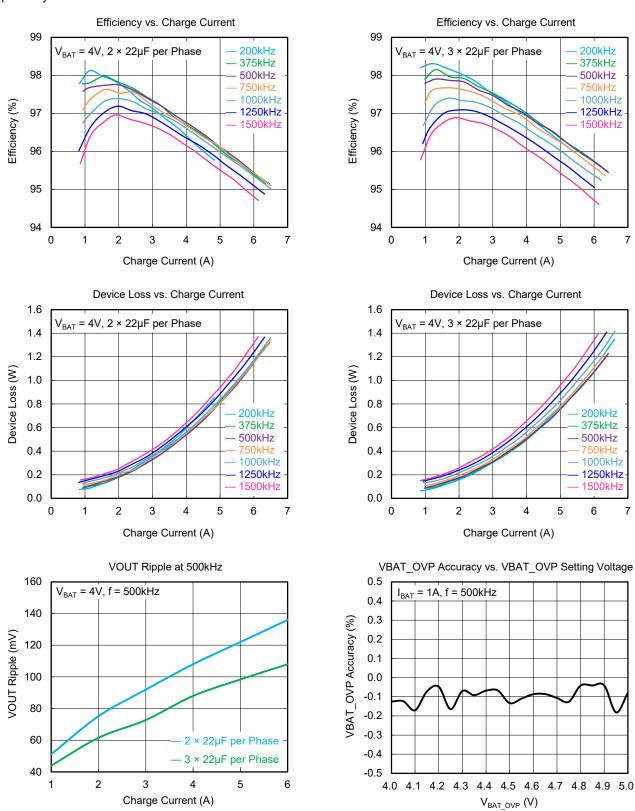
 $(T_J = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ typical values are at } T_J = +25^{\circ}C, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Protection		·				
nINT Low Pulse Duration when a Protection Occurs	t _{INT}			256		μs
VBUS OVP Rising Threshold Programming Range	$V_{BUS_{OVP}}$	I ² C programmable, 100mV per step, 11.5V by default	4		14	V
VBUS OVP Threshold Accuracy	$V_{\text{BUS}_\text{OVP}_\text{ACC}}$	V _{BUS_OVP} = 5V or 11.5V	-3.5		2	%
VBUS OVP Rising Deglitch Time ⁽¹⁾	t _{vbus_ovp_deg}	Deglitch between V_{VBUS} rising above $V_{\text{BUS}_\text{OVP}}$ and triggering protection action		100		ns
IBUS OCP Threshold Programming		Voltage divider I ² C programmable, mode 100mA per step, 3A by default			3.6	A
Range	100_001	Bypass mode I ² C programmable, 100mA per step, 5A by default	2.5		5.6	
IBUS OCP Threshold Initial Accuracy	IBUS_OCP_ACC	$I_{BUS} = 2.5A, T_{J} = +25^{\circ}C$	-6		6	%
IBUS OCP Deglitch Time	t _{IBUS_OCP_DEG}	Deglitch between I_{BUS} rising above $I_{\text{BUS}_\text{OCP}}$ and triggering protection action		50		μs
IBUS UCP Rising Threshold	I _{BUS_UCP_R}	Rising, set by REG0x07[6] = 0	200	300	400	mA
The contraining threation	IBUS_UCP_R	Rising, set by REG0x07[6] = 1	400	500	600	III.A
IBUS UCP Rising Deglitch Time	$t_{\text{IBUS}_\text{UCPR}_\text{DEG}}$	Deglitch between I _{BUS} rising above I _{BUS_UCP_R} and triggering protection action		10		μs
IDUS LICD Falling Threshold		Falling, set by REG0x07[6] = 0	50	150	250	mA
IBUS UCP Falling Threshold	BUS_UCP_F	Falling, set by REG0x07[6] = 1	150	250	350	mA
IBUS UCP Falling Deglitch Time	t _{IBUS_UCPF_DEG}	Deglitch between I_{BUS} falling below $I_{\text{BUS}_\text{UCP}_F}$ and triggering protection action		10		μs
VBAT OVP Rising Threshold Programming Range	V _{BAT_OVP}	I ² C programmable, 25mV per step, 4.35V by default	4		5	V
VBAT OVP Threshold Accuracy	$V_{BAT_OVP_ACC}$	$V_{BAT_OVP} = 4.35V$	-0.5		0.5	%
VBAT OVP Rising Deglitch Time	t _{vbat_ovp_deg}	Deglitch between V_{BAT} rising above $V_{\text{BAT}_{}\text{OVP}}$ and triggering protection action		8		μs
		During VBAT_REG		500		μs
IBAT OCP Threshold Programming Range	I _{BAT_OCP}	l ² C programmable, 100mA per step, 7.2A by default	2		7.2	А
IBAT OCP Threshold Accuracy	I _{BAT_OCP_ACC}	I_{BAT} = 4A, R_{SEN} = 5m Ω , T_J = +25°C		4.1		А
IBAT OUP Threshold Accuracy		$I_{BAT} = 4A, R_{SEN} = 5m\Omega, T_J = +25^{\circ}C$	-5.5		5.5	%
IBAT OCP Deglitch Time	t _{ibat ocp deg}	Deglitch between I _{BAT} rising above I _{BAT_OCP} and triggering protection action		50		μs
	"BAI_OCP_DEG	During IBAT_REG		500		μs
VDRP OVP Threshold Programming Range	V_{DRP_OVP}	I ² C programmable, 50mV per step, 300mV by default, V _{DRP} = V _{VAC} - V _{VBUS}	50		400	mV
TDIE OTP Rising Threshold	T_{DIE_OTP}			150		°C
Watchdog Timeout Programming Range ⁽¹⁾	t _{WDT}	l ² C programmable, 0.5s by default	0.5		80	s
ADC Specification						
ADC Resolution	ADC _{RES}			12		bits
ADC Conversion Time (1)	t _{ADC_CONV}	Report data for each channel		3	3.5	ms
ADC BUS Voltage Readable in	N/	Range	0		16.38	V
REG0x12 and REG0x13	V_{BUS_ADC}	LSB		4		mV
ADC BUS Voltage Accuracy	$V_{\text{BUS}_\text{ADC}_\text{ACC}}$	V_{VBUS} = 3.3V to 11.5V, $T_{\rm J}$ = 0°C to +85°C	-2.5		2	%
ADC BUS Current Readable in REG0x14 and REG0x15	I _{BUS_ADC}	Range	0	2	8.19	A
		LSB		2		mA
ADC BUS Current Accuracy	BUS_ADC_ACC	$I_{BUS} = 2A, T_J = 0^{\circ}C$ to $+85^{\circ}C$		2		%

ELECTRICAL CHARACTERISTICS (continued)

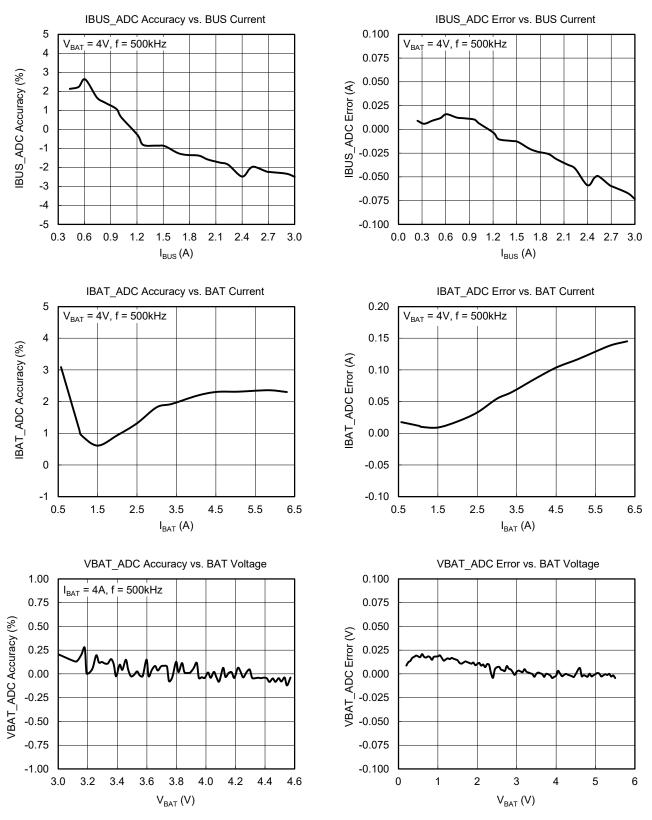
 $(T_J = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ typical values are at } T_J = +25^{\circ}C, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
ADC BAT Voltage Readable in	M	Range	0		5.5	V	
REG0x16 and REG0x17	V _{BAT_ADC}	LSB		2		mV	
ADC BAT Voltage Initial Accuracy	$V_{\text{BAT_ADC_ACC}}$	V_{BAT} = 3V to 4.8V, T_J =+25°C	-0.85		0.75	%	
ADC BAT Current Readable in	I	Range	0		8.19	А	
REG0x18 and REG0x19	IBAT_ADC	LSB		2		mA	
ADC BAT Current Initial Accuracy	$I_{BAT_ADC_ACC}$	$I_{BAT} = 4A, R_{SEN} = 5m\Omega, T_{J} = +25^{\circ}C$	-7.5		7.5	%	
ADC TDIE Temperature Readable in	Т	Range	-40		150	°C	
REG0x1A	T _{DIE_ADC}	LSB		1		°C	
ADC TDIE Temperature Accuracy	$T_{DIE_ADC_ACC}$			±4		°C	
Logic I/O Threshold (SCL, SDA and nl	NT Pins)						
High Level Input Voltage	V _{IH_I2C}	SCL and SDA pins	1.3			V	
Low Level Input Voltage	V _{IL_I2C}	SCL and SDA pins			0.4	V	
Low Level Output Voltage	V _{OL_I2C}	Sink 5mA, SDA and nINT pins			0.4	V	
I ² C Characteristics							
SCL Clock Frequency	f	Fast-mode		400 1000			
SCE Clock Frequency	f _{cLK}	Fast-mode plus				- kHz	
DP/DM Detection							
DP Force Detection Voltage	V_{DP_SRC}		0.55	0.6	0.65	V	
DM Pull-Down Detection Threshold	V_{DAT_REF}				0.4	V	
DM Pull-Down Detection Debounce Time $^{\left(1\right) }$	t _{DCD_DBNC}			60		ms	


NOTE:

1. Guaranteed by design.

TYPICAL PERFORMANCE CHARACTERISTICS


Typical performance characteristics are taken with test equipment and the demo board for non-switching and switching tests, respectively.

SG Micro Corp

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Typical performance characteristics are taken with test equipment and the demo board for non-switching and switching tests, respectively.

SG Micro Corp

TYPICAL APPLICATION CIRCUIT

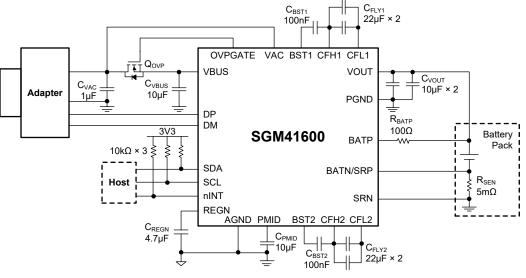


Figure 2. Typical Application Circuit

FUNCTIONAL BLOCK DIAGRAM

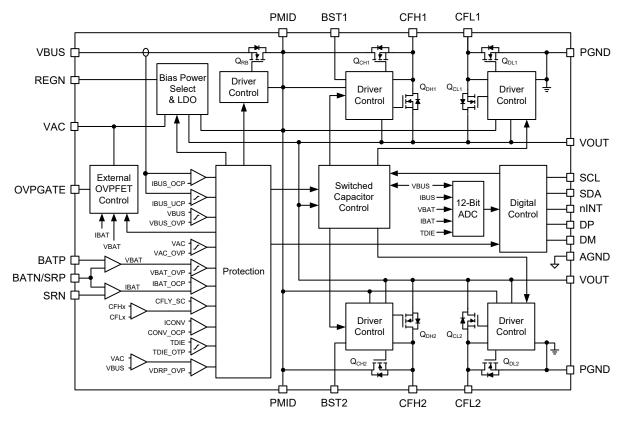


Figure 3. Functional Block Diagram

DETAILED DESCRIPTION

The SGM41600 is an efficient 6A battery charger that operates in voltage divider mode (switched-capacitor charge pump) or in bypass mode. A two-phase switched-capacitor core is integrated in the device to minimize the ripples and improve efficiency in the voltage divider mode. A FET control output for protection, a reverse blocking NFET and all other necessary protection features for safe charging are included. A high speed 12-bit ADC converter is also included to provide bus voltage, bus current, battery voltage, battery current, and die temperature information for the charge management host via I²C serial interface.

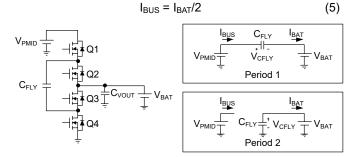
Charge-Pump Voltage Divider Mode

The charge-pump voltage divider mode operates with a fixed 50% duty cycle. The basic principle of operation is shown in Figure 4. In period 1, Q1 and Q3 are tuned on and V_{PMID} charges the C_{FLY} and the battery (in series) such that:

$$V_{CFLY} = V_{PMID} - V_{BAT}$$
(1)

In period 2, Q2 and Q4 are turned on and C_{FLY} appears in parallel with the battery:

$$V_{CFLY} = V_{BAT}$$
(2)


Ignoring the small fluctuation of the capacitor and battery voltages in period 1 and 2 in steady state operation, Equation 1 and 2 can be combined to calculate capacitor voltage:

$$V_{CFLY} = V_{BAT} = V_{PMID}/2$$
(3)

Ignoring small energy loss in each switching period, the input and output cycle-average powers are equal. Therefore,

$$V_{PMID} \times I_{BUS} = V_{BAT} \times I_{BAT}$$
(4)

or

Figure 4. Voltage Divider Charger Operating Principle

Assuming no charge leakage path and considering R_{EFF} as the effective input to output resistance (due to the switch on-resistances and C_{FLY} losses), the divider can be modeled as shown in Figure 5. Using this model, the output voltage is half of the input voltage under no load conditions as explained before. The SGM41600 has two phases of such architecture operating at f_{SW} frequency with 180° phase difference. Each phase provides $I_{VOUT}/2$ at the VOUT node, so:

$$V_{\text{VOUT}} = \frac{1}{2} V_{\text{PMID}} - \frac{1}{2} R_{\text{EFF}} \times I_{\text{VOUT}}$$
(6)

At low switching frequencies the capacitor charge sharing losses are dominant and $R_{EFF} \approx 1/(4f_{SW}C_{FLY})$. As frequency increases, R_{EFF} finally approaches ($R_{DS_QCH} + R_{DS_QDH} + R_{DS_QCL} + R_{DS_QDL}$)/2.

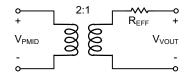


Figure 5. Model of Voltage Divider

The two-phase interleaved operation ensures a smooth input current and simplifies the noise filtering. The VOUT ripple can be estimated by first order approximation of C_{FLY} voltage drop due to the discharge in the half period, plus the discharge drop during the short dead time (15ns, TYP).

Selecting high quality C_{FLY} capacitors and proper switching frequency are the key factors for a well performing capacitor voltage divider. Switching frequency selection is a trade-off between efficiency and capacitor size. Lower frequency increases efficiency by reducing switching losses but requires larger capacitance to maintain low output ripple and low output impedance (R_{EFF}). An optimum switching frequency can be found for any selected C_{FLY} capacitor to minimize losses.

Bypass Mode

The SGM41600 is designed to operate in bypass mode when V_{BUS} is close to the V_{VOUT} . When such valid voltage is present on VBUS, the device enters bypass mode and all switches between VBUS and VOUT are fully turned on while the other switches are kept off. When V_{BUS} is near V_{VOUT} , the bypass mode offers the best efficiency and the device is capable of sourcing up to 5.6A (Maximum 4A continuous current is recommended in this mode).

The output voltage is close to the V_{BUS} minus a voltage drop caused by the on-resistances of the RBFET plus the two high-side switches of the two phases in parallel. So the REFF in bypass mode is:

 $R_{\text{EFF}}(Bypass mode) \approx (R_{\text{DS}_{QCH1}} + R_{\text{DS}_{QDH1}}) || (R_{\text{DS}_{QCH2}} + R_{\text{DS}_{QDH2}})$ (7)

where R_{DS_QXX} is the on-resistance of the switch xx.

DETAILED DESCRIPTION (continued)

Charge System

The SGM41600 is a slave charger device and needs a host. The host must set up all protection functions and disable the main charger before enabling the SGM41600. The host must monitor the nINT interrupts especially during high current charging. It must also communicate with the wall adapter to control the charge current.

Figure 6 shows the block diagram of a charge system using the SGM41600 along with a PD controller and other devices. In this system, the SGM41600 can allow each of the D+/D lines to be controlled independently to output one of the preset voltage levels (0V, 0.6V, 1.2V, 2.0V, 2.7V, 3.3V, and Hi-Z). Each line can be set to one of these presets via I²C in REG0x36. This allows the implementation of a handshaking protocol between the charger and an adapter with an interface that allows adjusting the voltage. Since the adapter voltage is controllable, the operating point of the charger can be fine-tuned to ensure high efficiency during charging. When the smart wall adapter is detected, the AP unit controls the switching charger (SGM41516) that powers the load system and the switched capacitor charger (SGM41600) that provides high current charging. The communication between those devices is via I²C serial interface.

A typical charge profile for a high-capacity battery using switching charger and switched capacitor charger together is shown in Figure 7. During the trickle charge and pre-charge, the charging is controlled by the switching charger. Once the battery voltage reaches 3V, the adapter can negotiate for a higher bus voltage and enable the SGM41600 for charging (bypass or voltage divider mode). Once the battery voltage reaches the V_{BAT_REG} point, the SGM41600 provides feedback to the adapter to reduce the current. This will eventually reduce and ramp down the bus current below $I_{BUS\ UCP\ F}$.

Startup Sequence

The SGM41600 is powered from the greater of VAC or VOUT (VAC is used as sense input for adapter voltage as well). The internal watchdog timer is enabled by default and if no I²C read or write occurs before its expiry, the ADC_EN and CHG_MODE bits are reset to their default values and after an initial 8ms power-up time, an INT pulse is triggered to show watchdog timeout. The host should not attempt to read or write before this initial nINT signal.

The device does not start charging after powered up, because by default the charger is disabled. The ADC can be enabled and the host can read the system parameters before enabling charge. The charge can be enabled only if $V_{VBUS} > V_{BUS_PRESENT_R}$ and $V_{BATP} > 2.8V$.

Device Power-Up from Battery without Input Source

To reduce the quiescent current and maximize the battery run time when it is the only available source, the REGN LDO and most of the sensing circuits are turned off, except AC_PRESENT, BUS_INSERT and BAT_INSERT functions. When the BUS_PDN_EN bit is set, the external OVPFET is turned off, and VBUS pull-down R_{PD_VBUS} is activated to help discharging VBUS after a hot-plug event. This will keep the device in low quiescent current mode even after an input source is plugged.

DETAILED DESCRIPTION (continued)

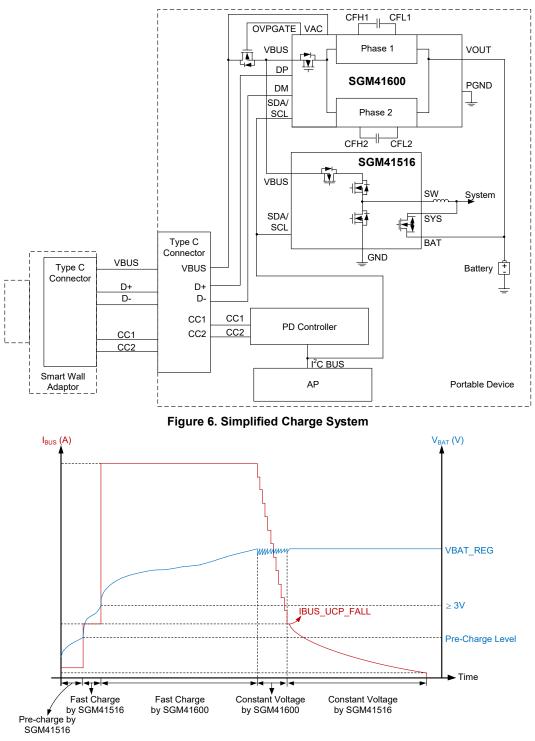


Figure 7. SGM41600 System Charging Profile

DETAILED DESCRIPTION (continued)

Device Power-Up from Input Source

When an input source is plugged-in and the $V_{VBUS} > V_{BUS_PRESENT_R}$ condition is valid, the host must initialize all protections to the desired thresholds before enabling charge. The protection thresholds that need to be set are AC_OVP, VBUS_LO, VBUS_HI, BUS_OVP, IBUS_OCP, IBUS_UCP, BAT_OVP, IBAT_OCP, VBAT_REG, IBAT_REG, and VDRP_OVP. If one of the protection trigger conditions is met, the charger stops switching. It will also turn off the external OVPFET when AC_OVP or BUS_SC event occurs.

After setting protections, the VBUS voltage is checked to be between $2 \times V_{BUS_LO} \times V_{VOUT}$ and $2 \times V_{BUS_HI} \times V_{VOUT}$ to allow voltage divider mode operation, or between $V_{BUS_LO} \times V_{VOUT}$ and $V_{BUS_HI} \times V_{VOUT}$ for bypass mode operation. Charging is enabled and current flows into the battery when the host sets bypass or voltage divider mode by writing 001 or 010 in the CHG_MODE[2:0] bits respectively. Then raising the VBUS voltage will increase the battery charge current. When the converter is on, any command to change the charge mode is ignored. To do so, the charging must be disabled first, and then the charge mode can be changed by I^2C serial interface.

REGN Management

The SGM41600 internal digital core is powered by the REGN LDO. This LDO is enabled and powered by PMID. A 4.7 μ F or lager capacitor is required on the REGN pin.

ADC

The SGM41600 integrates a fast 5-channel, 12-bit ADC converter to monitor input/output currents and voltages and the temperature of the device. The ADC is controlled by the

ADC_CTRL register. Setting the ADC_EN bit to 1 enables the ADC. This bit can be used to turn off the ADC and save power when it is not needed. The ADC_RATE bit allows choosing continuous conversion or 1-shot conversion mode. The ADC operates independent of the faults, unless the host sets the ADC_EN bit to 0.

The ADC can operate if $V_{VBUS} > V_{BUS_{PRESENT_R}}$ or $V_{BATP} > 2.8V$ condition is valid. Otherwise the ADC conversion is postponed until one of them is satisfied. The ADC readings are valid only for DC values and not for transients.

By default, all ADC channels are converted in continuous conversion mode except the channels disabled by the ADC_CTRL register. If the 1-shot conversion mode is selected, the ADC_DONE_FLAG bit is set to 1 when all channels are converted, then the ADC_EN bit is reset to 0. In the continuous conversion mode, the ADC_DONE_FLAG bit is set to 0.

nINT Pin, Flag and Mask Bits

The nINT pin is an open-drain output and must be pulled up to a logic high rail. It is pulled low with a duration of t_{INT} to notify the host when it is triggered by an event. See the register map for all event flag and control bits.

When an event occurs, a nINT signal is sent to the host and the corresponding flag bit is set to 1. The flag bit can be reset by read only after the fault is cleared. The nINT signal is not re-sent if an event is still present after the flag bit is read, unless another kind of event occurs. If an event mask bit is set, that event will not send nINT signal, but the flag bit is still updated independent of the mask bit.

I²C Controlled Single-Cell 6A Switched-Capacitor Fast Charger with Bypass Mode and ADC

DETAILED DESCRIPTION (continued)

Fault Event and Protection Status

Table 1 shows the protection features and corresponding conditions of the device.

VAC Over-Voltage Protection (AC_OVP)

The SGM41600 monitors the adapter voltage on the VAC pin to control the external OVPFET using OVPGATE output. The VAC over-voltage protection circuit is powered by VAC and is enabled if V_{VAC} rises above $V_{VAC_PRESENT_R}$. If V_{VAC} is above $V_{VAC_PRESENT_R}$ for at least $t_{VAC_IN_DEG}$ time, a 5V gate voltage

is sent to the OVPGATE output to turn on the external OVPFET. If the V_{VAC} reaches the V_{VAC_OVP} threshold for t_{VAC_OVP_DEG} deglitch time, the gate voltage starts to drop. Figure 8 shows the AC_OVP and OVPGATE operation timings. The V_{VAC_OVP} threshold can be set by I²C serial interface. The adapter voltage must never exceed the absolute maximum rating of the VAC pin and the external OVPFET.

Table 1. Fault Event List

FAULT EVENT	CONDITIONS	PROTECTION ACTION
AC_OVP	$V_{VAC} > V_{VAC_OVP}$ for $t_{VAC_OVP_DEG}$ during AC_PRESENT interval	Turn off OVPFET and Q_{RB} , enable R_{PD_VBUS} , and reset CHG_MODE[2:0] to 000
BUS_SC	$\label{eq:VBUS} \begin{array}{l} V_{\text{BUS}} < 2V \mbox{ during BUS_INSERT interval} \\ \mbox{or during OVPFET turn-on interval} \\ \mbox{or reverse } I_{\text{ORB}} > 4A \mbox{ during switching} \\ \mbox{or } V_{\text{VBUS}} < 1.9 \times V_{\text{VOUT}} \mbox{ in divider mode} \\ \mbox{or } V_{\text{VBUS}} < 0.95 \times V_{\text{VOUT}} \mbox{ in bypass mode} \end{array}$	Turn off OVPFET and Q_{RB} , and reset CHG_MODE[2:0] to 000
VBUS_LO	CHG_MODE[2:0] ≠ 000 (Off Mode) (disabled after switching for 100s)	Charging initiation suspended
VBUS_HI	CHG_MODE[2:0] ≠000 (Off Mode) (disabled after switching for 100s)	Charging initiation suspended
BUS_OVP	$V_{\text{VBUS}} > V_{\text{BUS}_\text{OVP}} \text{ for } t_{\text{VBUS}_\text{OVP}_\text{DEG}} \text{ during BUS}_\text{INSERT interval}$	Turn off Q_{RB} and reset CHG_MODE[2:0] to 000
IBUS_OCP	CHG_MODE[2:0] ≠ 000 (Off Mode)	Turn off Q_{RB} and reset CHG_MODE[2:0] to 000
IBUS_UCP	CHG_MODE[2:0] ≠ 000 (Off Mode)	Turn off Q _{RB} and reset CHG_MODE[2:0] to 000
IBUS_UCP_TIMEOUT	I _{BUS} < I _{BUS_UCP_R} after 100s timeout	Turn off Q _{RB} and reset CHG_MODE[2:0] to 000
BAT_OVP	$V_{BAT} > V_{BAT_{OVP}}$ for $t_{VBAT_{OVP_{DEG}}}$ during BAT_INSERT interval	Turn off Q _{RB} and reset CHG_MODE[2:0] to 000
IBAT_OCP	CHG_MODE[2:0] ≠ 000 (Off Mode)	Turn off Q _{RB} and reset CHG_MODE[2:0] to 000
VOUT_SC	CHG_MODE[2:0] ≠ 000 (Off Mode)	Turn off Q _{RB} and reset CHG_MODE[2:0] to 000
CFLY_SC	CHG_MODE[2:0] = 010 (Voltage Divider Mode)	Turn off Q_{RB} and reset CHG_MODE[2:0] to 000
CONV_OCP	CHG_MODE[2:0] = 010 (Voltage Divider Mode)	Turn off Q_{RB} and reset CHG_MODE[2:0] to 000
VDRP_OVP	CHG_MODE[2:0] ≠ 000 (Off Mode)	Turn off Q _{RB} and reset CHG_MODE[2:0] to 000
REG_TIMEOUT	CHG_MODE[2:0] ≠ 000 (Off Mode)	Turn off Q _{RB} and reset CHG_MODE[2:0] to 000
TDIE_OTP	CHG_MODE[2:0] ≠ 000 (Off Mode) or ADC_EN = 1	Turn off Q _{RB} and reset CHG_MODE[2:0] to 000

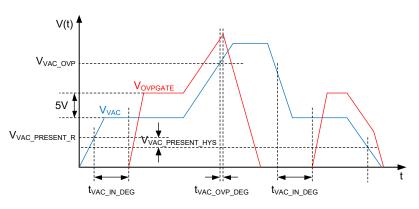


Figure 8. AC_OVP and OVPGATE Operation Timings

DETAILED DESCRIPTION (continued)

Input Short-Circuit Protection (BUS_SC)

The BUS_SC function monitors the VBUS pin for short-circuit. This function is enabled if the external OVPFET is turned on or if V_{VBUS} rises above V_{BUS_PRESENT_R}. If the V_{VBUS} falls below 2V (BUS_SC event), the OVPFET is turned off, and charging is stopped. CHG_MODE[2:0] bits are reset to 000 (disable). Also, BUS_ABSENT_FLAG bit is set to 1, and an INT pulse is asserted. The device will wait for 650ms before automatically re-enabling and initiating startup sequence.

During charging, if V_{VBUS} is less than 1.9 × V_{VOUT} in divider mode or 0.95 × V_{VOUT} in bypass mode, or if the Q_{RB} reverse current rises above 4A, the Q_{RB} and OVPFET are turned off, and charging is stopped. CHG_MODE[2:0] bits are reset to 000 (disable). Also, BUS_ABSENT_FLAG bit is set to 1, and an INT pulse is asserted.

VBUS Charge Voltage Range (VBUS_LO and VBUS_HI)

The VBUS_LO and VBUS_HI functions are included to avoid problems due to wrong V_{BUS} setting for charging. Under no charge condition if V_{VBUS} is less than (V_{VOUT} × V_{BUS_LO} × 2) or above (V_{VOUT} × V_{BUS_HI} × 2), the device remains in charge initiation operation if the voltage divider mode is selected. If the bypass mode is selected, the range is from (V_{VOUT} × V_{BUS_LO}) to (V_{VOUT} × V_{BUS_HI}). Charging will start once V_{BUS} is within the charge range. VBUS_LO and VBUS_HI functions are enabled for maximum 100s at startup and are disabled if I_{BUS} is above I_{BUS_UCP_R} during a period of 100s. The VBUS_LO and VBUS_HI thresholds can be set by I²C serial interface.

Input and Battery Over-Voltage Protections (BUS_OVP and BAT_OVP)

The BUS_OVP and BAT_OVP functions detect input and output charge voltage conditions. If either input or output voltage is higher than the protection threshold, the charger is turned off and CHG_MODE[2:0] bits are reset to 000 (disable). The BUS_OVP function monitors VBUS pin voltage. The BAT_OVP uses BATP and BATN/SRP remote sense pins to monitor differential voltage between the battery terminals. To minimize the risk of battery terminal short in the manufacturing process, a series 100 Ω resistor on the BATP pin is required. The BUS_OVP and BAT_OVP thresholds can be set by I²C serial interface.

Input and Battery Over-Current Protections (IBUS_OCP and IBAT_OCP)

The IBUS_OCP function monitors the input current via $Q_{RB}.$ If CHG_MODE[2:0] bits are set to enable charge, the Q_{RB} is

turned on and the IBUS_OCP function starts detecting the input current. If the I_{BUS} reaches I_{BUS_OCP} threshold, the device stops charging and resets CHG_MODE[2:0] bits to 000 (disable). The battery current is monitored by the voltage across an external 5m Ω series shunt resistor. This differential voltage is measured between BATN/SRP and SRN pins. If I_{BAT_OCP} threshold is reached, the device stops charging and resets CHG_MODE[2:0] bits to 000 (disable). The IBUS_OCP and IBAT_OCP thresholds can be set by I²C serial interface.

Input Under-Current Protection (IBUS_UCP)

The IBUS_UCP function detects the input current via Q_{RB} . After charging is started, a 100s timer is enabled and I_{BUS} current is compared with $I_{BUS_UCP_R}$ (selected by the IBUS_UCP bit). If I_{BUS} cannot exceed $I_{BUS_UCP_R}$ within the 100s period, the charging will be stopped and CHG_MODE[2:0] bits are reset to 000 (disable). If I_{BUS} exceeds $I_{BUS_UCP_R}$ within the 100s period, the timer is stopped and from then, if I_{BUS} falls below the $I_{BUS_UCP_F}$ threshold, the charging will be stopped and CHG_MODE[2:0] bits are reset to 000 (disable).

VOUT Short-Circuit Protection (VOUT_SC) The VOUT_SC function monitors the VOUT pin for short-circuit. This function is enabled during charging. If V_{VOUT} falls below $V_{VBUS}/2.28$ threshold when the voltage divider mode is selected, the charger is turned off and CHG_MODE[2:0] bits are reset to 000 (disable). Also, the PIN_DIAG_FLAG bit is set to 1, and an INT pulse is generated. When the bypass mode is selected, the threshold is $V_{VBUS}/1.14$.

CFLY Short-Circuit Protection (CFLY_SC) The CFLY SC function identifies the health of flying capacitors before and during voltage divider switching (charging). The device initialization process is started after CHG_MODE[2:0] bits are set to 010. When V_{BUS} is in the charge range, the flying capacitors (C_{FLY}) in both phases are pre-charged. A CFLY short-circuit is detected if they cannot be charged, and the voltage between V_{CEHx} and V_{CELx} remains below 2V. If so, the initialization process is stopped and CHG_MODE[2:0] bits are reset to 000 (disable). Even if C_{FLY} capacitors pass the short-circuit test in the initialization process, the CFLY SC function remains active and whenever a V_{CFLY} voltage falls below 2V, the charger is turned off and CHG_MODE[2:0] bits are reset to 000 (disable). The PIN DIAG FLAG bit is set to 1 and an INT pulse is generated as well. During a CFLY SC event, other protection events such as IBUS OCP, BAT OVP or CONV OCP may occur.

DETAILED DESCRIPTION (continued)

A CFLY discharge circuit is activated before the internal RBFET (Q_{RB}) is turned on if $V_{VBUS} > V_{BUS_{PRESENT_R}}$ to prevent over-current stress at the start of charging.

Converter Over-Current Protection (CONV_OCP) The CONV_OCP function monitors the converter switch operating currents. If the Q_{CHx} and Q_{DLx} currents reach switch OCP threshold during voltage divider mode, the CONV_OCP_FLAG bit is set to 1, an INT pulse is generated, the charging is stopped, and CHG_MODE[2:0] bits are reset to 000 (disable).

Battery Voltage and Current Regulation (VBAT_REG and IBAT_REG)

The SGM41600 has VBAT_REG and IBAT_REG regulation functions to regulate the battery voltage and current for a short period before the system can re-adjust the conditions such that these functions can be disabled. The regulation thresholds can be set by I^2C serial interface.

The VBAT_REG function monitors the differential voltage between BATP and BATN/SRP pins and if the battery voltage is above the V_{BAT_REG} threshold, the OVPGATE voltage is controlled to regulate the battery voltage.

The VBAT_REG_FLAG bit is also set to 1, and an INT pulse is generated. Then the host can negotiate with the adapter to reduce the current. This will gradually reduce the current until the bus current falls to the $I_{BUS\UCP\F}$ and charging will end.

Similarly, the IBAT_REG function monitors the differential voltage between BATN/SRP and SRN pins to find the battery

current and if the I_{BAT_REG} threshold is exceeded, the OVPGATE voltage is controlled (reduced) to regulate the charge current.

If one of the regulation functions is triggered and persist for 650ms when REG_TIMEOUT_DIS bit is set to 0, the charging will be stopped and CHG_MODE[2:0] bits are reset to 000 (disable). The system should adjust the charging conditions to prevent the battery voltage and current regulation for more than 650ms (or prevent triggering of the VDRP_OVP).

Dropout Over-Voltage Protection (VDRP_OVP) When VBAT_REG or IBAT_REG is active, a large voltage drop may appear on the external OVPFET and cause excessive power loss and heat. To avoid that, the VDRP_OVP function monitors the voltage drop between VAC and VBUS pins. If it is higher than V_{DRP_OVP} threshold for $t_{DRP_OVP_DEG}$ deglitch time (set by VDRP_OVP_DEG bit in REG0x05), the charging will be stopped and CHG_MODE[2:0] bits are reset to 000 (disable). The V_{DRP_OVP} threshold and $t_{DRP_OVP_DEG}$ deglitch time can be programmed by I²C serial interface.

Die Over-Temperature Protection (TDIE_OTP) The TDIE_OTP function prevents charging in over-temperature condition. The die temperature is monitored and if the +150 °C threshold is reached, the charging is stopped and CHG_MODE[2:0] bits are reset to 000 (disable). An automatic startup sequence can initiate if the die temperature falls below +130 °C.

REGISTER MAP

All registers are 8-bit and individual bits are named from D[0] (LSB) to D[7] (MSB).

I²C Slave Address of SGM41600 is: 0x6F (0b1101111 + W/R)

FUNCTION	FLAG	MASK	THRESHOLD	ENABLE	DEGLITCH
REG_RST	_		SETTING 0x00[7]		_
CHG_MODE		_	0x00[6:4]		_
WD_TIMEOUT	0x0F[5]	0x10[5]	0x00[2:0]	0x00[3]	
FSW_SET	_	-	0x01[7:5]	_	_
FSW_SHIFT	_	_	0x01[4:3]	_	_
PIN_DIAG	0x0F[0]	0x10[0]		0x02[7]	_
(CFLY_SC and VOUT_SC) VBUS_LO	0x0D[2]	0x0E[2]	0x02[3:2]	0x02[5]	_
VBUS_HI	0x0D[1]	0x0E[1]	0x02[1:0]	0x02[4]	_
BUS_SC and BUS_ABSENT	0x0F[3]	0x10[3]	0x01[0]		_
DEVICE_REV	_	_	0x03[7:4]		_
 DEVICE_ID	_	_	0x03[3:0]	_	_
 AC_OVP	0x0B[7]	0x0C[7]	0x04[3:0]	0x04[4]	_
AC_PDN	0x0B[6]	0x0C[6]	_	0x05[7]	_
BUS_PDN	0x0B[5]	0x0C[5]	—	0x05[6]	—
VDRP_OVP	0x0B[4]	0x0C[4]	0x05[2:0]	0x05[5]	0x05[4]
BUS_OVP	0x0B[3]	0x0C[3]	0x06[6:0]	0x06[7]	—
IBUS_OCP	0x0B[2]	0x0C[2]	0x07[4:0]	0x07[5]	_
IBUS_UCP_RISE	0x0B[1]	0x0C[1]	0x07[6]	0x07[7]	_
IBUS_UCP_FALL	0x0B[0]	0x0C[0]	0x07[6]	0x07[7]	_
IBUS_UCP_TIMEOUT	0x0F[2]	0x10[2]	_		_
BAT_OVP	0x0D[7]	0x0E[7]	0x08[5:0]	0x08[7]	—
IBAT_OCP	0x0D[6]	0x0E[6]	0x09[5:0]	0x09[7]	—
VBAT_REG	0x0D[5]	0x0E[5]	0x0A[1:0]	0x0A[2]	—
IBAT_REG	0x0D[4]	0x0E[4]	0x0A[4:3]	0x0A[5]	—
REG_TIMEOUT	—	—	—	0x0A[6]	—
TDIE_OTP	0x0D[3]	0x0E[3]	—		—
CONV_OCP	0x0D[0]	0x0E[0]	0x01[1]	_	—
BUS_INSERT	0x0F[7]	0x10[7]	—		—
BAT_INSERT	0x0F[6]	0x10[6]	_	_	—
AC_ABSENT	0x0F[4]	0x10[4]	_		—
ADC_DONE	0x0F[1]	0x10[1]	—	_	—
ADC_EN	—	-	-	0x11[7]	—
ADC_RATE	_	—	0x11[6]	_	—
VBUS_ADC	—	_	0x12[3:0] + 0x13[7:0]	0x11[5]	—
IBUS_ADC		_	0x14[3:0] + 0x15[7:0]	0x11[4]	_
VBAT_ADC	—	-	0x16[3:0] + 0x17[7:0]	0x11[3]	—
IBAT_ADC		—	0x18[3:0] + 0x19[7:0]	0x11[2]	—
TDIE_ADC	—	—	0x1A[7:0]	0x11[1]	—

Bit Types:

R:	Read only
R/W:	Read/Write
RC:	Read clears the bit
R/WC:	Read/Write, Writing a '1' clears t

R/WC: Read/Write. Writing a '1' clears the bit. Writing a '0' has no effect.

REG0x00: CONTROL1 Register Address [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	REG_RST	0	R/W	Register Reset 0 = No register reset (default) 1 = Reset all registers to their default values	REG_RST
D[6:4]	CHG_MODE[2:0]	000	R/W	Charge Mode Control 000 = Off mode (default) 001 = Forward bypass mode 010 = Forward charge-pump voltage divider mode 011 ~ 111 = Off mode Note: These bits are not allowed to change during charging.	REG_RST, Watchdog or many other events
D[3]	WDT_DIS	0	R/W	Watchdog Enable 0 = Watchdog enabled (default) 1 = Watchdog disabled	REG_RST
D[2:0]	WDT_TIMER[2:0]	000	R/W	Watchdog Timer Setting 000 = 0.5s (default) 001 = 1s 010 = 2s 011 = 5s 100 = 10s 101 = 20s 110 = 40s 111 = 80s	REG_RST

REG0x01: CONTROL2 Register Address [reset = 0x42]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:5]	FSW_SET[2:0]	010	R/W	Voltage Divider Switching Frequency Setting 000 = 200kHz 001 = 375kHz 010 = 500kHz (default) 011 = 750kHz 100 = 1000kHz 101 = 1250kHz 110 ~ 111 = 1500kHz	NA
D[4:3]	FSW_SHIFT[1:0]	00	R/W	Trimming Bits for Switching Frequency (for EMI frequency spectrum shifting) 00/11 = Nominal frequency (default) 01 = Nominal frequency + 10% 10 = Nominal frequency - 10%	REG_RST
D[2]	Reserved	0	R	Reserved	NA
D[1]	CONV_OCP	1	R/W	CONV OCP Threshold Setting Bit 0 = 7.3A 1 = 5.6A (default)	NA
D[0]	BUS_SC_TRG	0	R/W	Setting Bit of VBUS Short-Circuit Trigger Mode during Switching 0 = Triggered by Q_{RB} 4A reverse current (default) 1 = Triggered by V_{VBUS}/V_{OUT} scale factor, 1.9 in voltage divider mode while 0.95 in bypass mode	NA

REG0x02: CONTROL3 Register Address [reset = 0xBC]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	PIN_DIAG_EN	1	R/W	Pin Diagnosis Enable 0 = Disabled 1 = Enabled (default)	REG_RST
D[6]	Reserved	0	R	Reserved	NA
D[5]	VBUS_LO_EN	1	R/W	Low VBUS Error Detection Enable 0 = Disabled 1 = Enabled (default)	REG_RST
D[4]	VBUS_HI_EN	1	R/W	High VBUS Error Detection Enable 0 = Disabled 1 = Enabled (default)	REG_RST
D[3:2]	VBUS_LO[1:0]	11	R/W	Low VBUS Error Range Scale Setting 00 = 1.01 01 = 1.02 10 = 1.03 11 = 1.04 (default)	NA
D[1:0]	VBUS_HI[1:0]	00	R/W	High VBUS Error Range Scale Setting 00 = 1.10 (default) 01 = 1.15 10 = 1.20 11 = 1.25	NA

REG0x03: DEVICE_INFO Register Address [reset = 0x08]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:4]	DEVICE_REV[3:0]	0000	R	Device Revision	NA
D[3:0]	DEVICE_ID[3:0]	1000	R	Device ID 1000 = SGM41600	NA

REG0x04: AC_OVP Register Address [reset = 0x18]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:5]	Reserved	000	R	Reserved	NA
D[4]	AC_OVP_EN	1	R/W	VAC OVP Enable 0 = Disabled 1 = Enabled (default)	REG_RST
D[3:0]	AC_OVP[3:0]	1000	R/W	VAC OVP Rising Threshold Setting VAC OVP Rising Threshold Value: = 4V + AC_OVP[3:0] × 1V Offset: 4V Range: 4V (0000) - 19V (1111) Default: 12V (1000)	REG_RST

REG0x05: Pull-Down & VDRP_OVP Register Address [reset = 0x25]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	AC_PDN_EN	0	R/W	VAC Pull-Down Resistor Enable 0 = Disabled (default) 1 = Enabled When enabled, the VAC is pulled down for 400ms and then this bit is automatically reset to 0.	NA
D[6]	BUS_PDN_EN	0	R/W	VBUS Pull-Down Resistor Enable 0 = Disabled (default) 1 = Enabled Enabling this bit will turn off the external OVPFET and discharge VBUS with R _{PD_VBUS} . This action is important during a hot-plug event to prevent transient over-voltages.	REG_RST
D[5]	VDRP_OVP_EN	1	R/W	VDRP OVP Enable (V _{DRP} = V _{VAC} - V _{VBUS}) 0 = Disabled 1 = Enabled (default)	REG_RST
D[4]	VDRP_OVP_DEG	0	R/W	VDRP OVP Deglitch Time Setting $0 = 10\mu s$ (default) $1 = 5ms$ This is deglitch time ($t_{DRP_OVP_DEG}$) between the moment V_{DRP} exceeds V_{DRP_OVP} threshold and triggering of the protection action.	REG_RST
D[3]	Reserved	0	R	Reserved	NA
D[2:0]	VDRP_OVP[2:0]	101	R/W	VDRP OVP Threshold Setting VDRP OVP Threshold Value: = 50mV + VDRP_OVP[2:0] × 50mV Offset: 50mV Range: 50mV (000) - 400mV (111) Default: 300mV (101)	NA

REG0x06: BUS_OVP Register Address [reset = 0xCB]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	BUS_OVP_EN	1	R/W	VBUS OVP Enable 0 = Disabled 1 = Enabled (default)	REG_RST
D[6:0]	BUS_OVP[6:0]	1001011	R/W	VBUS OVP Rising Threshold Setting VBUS OVP Rising Threshold Value: = $4V + BUS_OVP[6:0] \times 100mV$ Offset: $4V$ Range: $4V$ (0000000) - $14V$ (1100100) Default: 11.5V (1001011) If BUS_OVP[6:0] \geq 1100100, V_{BUS_OVP} = $14V$	REG_RST

REG0x07: IBUS_OCP and IBUS_UCP Register Address [reset = 0xB9]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	IBUS_UCP_EN	1	R/W	IBUS UCP Enable 0 = Disabled 1 = Enabled (default)	REG_RST
D[6]	IBUS_UCP	0	R/W	IBUS UCP Threshold Setting $0 = I_{BUS_UCP_R} = 300$ mA rising, $I_{BUS_UCP_F} = 150$ mA falling (default) $1 = I_{BUS_UCP_R} = 500$ mA rising, $I_{BUS_UCP_F} = 250$ mA fallingThe system should control the I_{BUS} current to rise to $I_{BUS_UCP_R}$ within 100s.This bit can only be changed before enabling switching.	NA
D[5]	IBUS_OCP_EN	1	R/W	IBUS OCP Enable 0 = Disabled 1 = Enabled (default)	REG_RST
D[4:0]	IBUS_OCP[4:0]	11001	R/W	IBUS OCP Threshold Setting Voltage Divider Mode: $I_{BUS_{OCP}} = 0.5A + IBUS_{OCP}[4:0] \times 100mA$ Offset: 0.5A Range: 0.5A (00000) - 3.6A (11111) Default: 3A (11001) Bypass Mode: $I_{BUS_{OCP}} = 2.5A + IBUS_{OCP}[4:0] \times 100mA$ Offset: 2.5A Range: 2.5A (00000) - 5.6A (11111) Default: 5A (11001)	REG_RST

REG0x08: BAT_OVP Register Address [reset = 0x8E]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	BAT_OVP_EN	1	R/W	VBAT OVP Enable 0 = Disabled 1 = Enabled (default)	REG_RST
D[6]	Reserved	0	R	Reserved	NA
D[5:0]	BAT_OVP[5:0]	001110	R/W	VBAT OVP Rising Threshold Setting VBAT OVP Rising Threshold Value: = 4V + BAT_OVP[5:0] × 25mV Offset: 4V Range: 4V (000000) - 5V (101000) Default: 4.35V (001110) When BAT_OVP[5:0] ≥ 101000, V_{BAT_OVP} = 5V	REG_RST

REG0x09: IBAT_OCP Register Address [reset = 0xB4]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	IBAT_OCP_EN	1	R/W	IBAT OCP Enable 0 = Disabled 1 = Enabled (default)	REG_RST
D[6]	Reserved	0	R	Reserved	NA
D[5:0]	IBAT_OCP[5:0]	110100	R/W	IBAT OCP Threshold Setting IBAT OCP Threshold Value: = $2A + IBAT_OCP[5:0] \times 100mA$ Offset: $2A$ Range: $2A (000000)$ to $7.2A (110100)$ Default: $7.2A (110100)$ When IBAT_OCP[5:0] ≥ 110100 , $I_{BAT OCP} = 7.2A$	REG_RST

REG0x0A: Regulation Register Address [reset = 0x24]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	Reserved	0	R	Reserved	NA
D[6]	REG_TIMEOUT_DIS	0	R/W	Regulation Timeout Disable 0 = Enabled (default) 1 = Disabled. If the regulation lasts longer than 650ms, charging will be disabled.	NA
D[5]	IBAT_REG_EN	1	R/W	IBAT Regulation Enable 0 = Disabled 1 = Enabled (default) During regulation, t _{IBAT_OCP_DEG} is increased to 500µs to avoid unwanted triggering of IBAT_OCP	NA
D[4:3]	IBAT_REG[1:0]	00	R/W	IBAT Regulation Threshold Setting 00 = 200mA below IBAT_OCP[5:0] threshold setting (default) 01 = 300mA below IBAT_OCP[5:0] threshold setting 10 = 400mA below IBAT_OCP[5:0] threshold setting 11 = 500mA below IBAT_OCP[5:0] threshold setting The margin below IBAT_OCP[5:0] threshold at which IBAT regulation starts.	NA
D[2]	VBAT_REG_EN	1	R/W	VBAT Regulation Enable 0 = Disabled 1 = Enabled (default) During regulation, t _{VBAT_OVP_DEG} is increased to 500µs to avoid unwanted triggering of VBAT OVP	NA
D[1:0]	VBAT_REG[1:0]	00	R/W	VBAT Regulation Threshold Setting 00 = 50mV below BAT_OVP[5:0] threshold setting (default) 01 = 100mV below BAT_OVP[5:0] threshold setting 10 = 150mV below BAT_OVP[5:0] threshold setting 11 = 200mV below BAT_OVP[5:0] threshold setting The margin below BAT_OVP[5:0] threshold at which VBAT regulation starts.	NA

REG0x0B: FLT_FLAG1 Register Address [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	AC_OVP_FLAG	0	RC	VAC OVP Fault Flag 0 = No VAC OVP fault 1 = VAC OVP fault has occurred It generates an interrupt on nINT pin if unmasked. After the VAC OVP fault is cleared, a read on this bit will reset it to 0.	NA
D[6]	AC_PDN_FLAG	0	RC	VAC Pull-Down Event Flag 0 = No VAC pull-down event 1 = VAC pull-down event has occurred It generates an interrupt on nINT pin if unmasked. After the VAC pull-down event is cleared, a read on this bit will reset it to 0.	NA
D[5]	BUS_PDN_FLAG	0	RC	VBUS Pull-Down Event Flag 0 = No VBUS pull-down event 1 = VBUS pull-down event has occurred It generates an interrupt on nINT pin if unmasked. After the VBUS pull-down event is cleared, a read on this bit will reset it to 0.	REG_RST
D[4]	VDRP_OVP_FLAG	0	RC	VDRP OVP Fault Flag 0 = No VDRP OVP fault 1 = VDRP OVP fault has occurred It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	NA
D[3]	BUS_OVP_FLAG	0	RC	VBUS OVP Fault Flag 0 = No VBUS OVP fault 1 = VBUS OVP fault has occurred It generates an interrupt on nINT pin if unmasked. After the VBUS OVP fault is cleared, a read on this bit will reset it to 0.	NA
D[2]	IBUS_OCP_FLAG	0	RC	IBUS OCP Fault Flag 0 = No IBUS OCP fault 1 = IBUS OCP fault has occurred It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	NA
D[1]	IBUS_UCP_RISE_ FLAG	0	RC	IBUS_UCP_RISE Event Flag 0 = No IBUS_UCP_RISE event 1 = IBUS_UCP_RISE event has occurred It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	REG_RST
D[0]	IBUS_UCP_FALL_ FLAG	0	RC	IBUS_UCP_FALL Event Flag 0 = No IBUS_UCP_FALL event 1 = IBUS_UCP_FALL event has occurred It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	REG_RST

REG0x0C: FLT_INT_MASK1 Register Address [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	AC_OVP_MASK	0	R/W	Mask VAC OVP Fault Interrupt 0 = VAC OVP fault interrupt can work (default) 1 = Mask VAC OVP fault interrupt AC_OVP_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST
D[6]	AC_PDN_MASK	0	R/W	Mask VAC Pull-Down Event Interrupt 0 = VAC pull-down event interrupt can work (default) 1 = Mask VAC pull-down event interrupt AC_PDN_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST
D[5]	BUS_PDN_MASK	0	R/W	Mask VBUS Pull-Down Event Interrupt 0 = VBUS pull-down event interrupt can work (default) 1 = Mask VBUS pull-down event interrupt BUS_PDN_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST
D[4]	VDRP_OVP_MASK	0	R/W	Mask VDRP OVP Fault Interrupt 0 = VDRP OVP fault interrupt can work (default) 1 = Mask VDRP OVP fault interrupt VDRP_OVP_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST
D[3]	BUS_OVP_MASK	0	R/W	Mask BUS OVP Fault Interrupt 0 = BUS OVP fault interrupt can work (default) 1 = Mask BUS OVP fault interrupt BUS_OVP_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST
D[2]	IBUS_OCP_MASK	0	R/W	Mask IBUS OCP Fault Interrupt 0 = IBUS OCP fault interrupt can work (default) 1 = Mask IBUS OCP fault interrupt IBUS_OCP_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST
D[1]	IBUS_UCP_RISE_ MASK	0	R/W	Mask IBUS_UCP_RISE Event Interrupt 0 = IBUS_UCP_RISE event interrupt can work (default) 1 = Mask IBUS_UCP_RISE event interrupt IBUS_UCP_RISE_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST
D[0]	IBUS_UCP_FALL_ MASK	0	R/W	Mask IBUS_UCP_FALL Event Interrupt 0 = IBUS_UCP_FALL event interrupt can work (default) 1 = Mask IBUS_UCP_FALL event interrupt IBUS_UCP_FALL_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST

REG0x0D: FLT_FLAG2 Register Address [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	BAT_OVP_FLAG	0	RC	VBAT OVP Fault Flag 0 = No VBAT OVP fault 1 = VBAT OVP fault has occurred It generates an interrupt on nINT pin if unmasked. After the VBAT OVP fault is cleared, reading this bit will reset it to 0.	NA
D[6]	IBAT_OCP_FLAG	0	RC	IBAT OCP Fault Flag 0 = No IBAT OCP fault 1 = IBAT OCP fault has occurred It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	NA
D[5]	VBAT_REG_FLAG	0	RC	VBAT Regulation Event Flag 0 = No VBAT regulation event 1 = VBAT regulation event has occurred It generates an interrupt on nINT pin if unmasked. After the VBAT regulation event is cleared, reading this bit will reset it to 0.	NA
D[4]	IBAT_REG_FLAG	0	RC	IBAT Regulation Event Flag 0 = No IBAT regulation event 1 = IBAT regulation event has occurred It generates an interrupt on nINT pin if unmasked. After the IBAT regulation event is cleared, reading this bit will reset it to 0.	NA
D[3]	TDIE_OTP_FLAG	0	RC	TDIE OTP Fault Flag (Die Over-Temperature) 0 = No TDIE OTP fault 1 = TDIE OTP fault has occurred It generates an interrupt on nINT pin if unmasked. After the TDIE OTP fault is cleared, reading this bit will reset it to 0.	NA
D[2]	VBUS_LO_FLAG	0	RC	VBUS_LO Fault Flag Bit (VBUS under-voltage)It is set to 1 if $V_{VBUS}/V_{VOUT} < 2 \times V_{BUS_LO}$ in voltage divider mode,or $V_{VBUS}/V_{VOUT} < V_{BUS_LO}$ in bypass mode.0 = No VBUS_LO fault1 = VBUS_LO fault has occurredIt generates an interrupt on nINT pin if unmasked. After theVBUS_LO fault is cleared, reading this bit will reset it to 0.	NA
D[1]	VBUS_HI_FLAG	0	RC	$\label{eq:VBUS_HI} \begin{array}{l} \mbox{VBUS_HI Fault Flag Bit (VBUS over-voltage)} \\ \mbox{It is set to 1 if $V_{VBUS}/V_{VOUT} > 2 $$ $V_{BUS_{HI}}$ in voltage divider mode,} \\ \mbox{or $V_{VBUS}/V_{VOUT} > V_{BUS_{HI}}$ in bypass mode.} \\ \mbox{0 = No VBUS_HI fault} \\ \mbox{1 = VBUS_HI fault has occurred} \\ \mbox{It generates an interrupt on nINT pin if unmasked. After the} \\ \mbox{VBUS_HI fault is cleared, reading this bit will reset it to 0.} \end{array}$	NA
D[0]	CONV_OCP_FLAG	0	RC	CONV OCP Fault Flag (Converter over-current during voltage divider mode) It is set to 1 if the internal switching FETs, Q_{CHx} and Q_{DLx} reach switch OCP threshold successively. 0 = No CONV OCP fault 1 = CONV OCP fault has occurred It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	NA

REG0x0E: FLT_INT_MASK2 Register Address [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	BAT_OVP_MASK	0	R/W	Mask VBAT OVP Fault Interrupt 0 = VBAT OVP fault interrupt can work (default) 1 = Mask VBAT OVP fault interrupt BAT_OVP_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST
D[6]	IBAT_OCP_MASK	0	R/W	Mask IBAT OCP Fault Interrupt 0 = IBAT OCP fault interrupt can work (default) 1 = Mask IBAT OCP fault interrupt IBAT_OCP_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST
D[5]	VBAT_REG_MASK	0	R/W	Mask VBAT Regulation Event Interrupt 0 = VBAT regulation event interrupt can work (default) 1 = Mask VBAT regulation event interrupt. VBAT_REG_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST
D[4]	IBAT_REG_MASK	0	R/W	Mask IBAT Regulation Event Interrupt 0 = IBAT regulation event interrupt can work (default) 1 = Mask IBAT regulation event interrupt IBAT_REG_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST
D[3]	TDIE_OTP_MASK	0	R/W	Mask TDIE OTP Fault Interrupt 0 = TDIE OTP fault interrupt can work (default) 1 = Mask TDIE OTP fault interrupt TDIE_OTP_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST
D[2]	VBUS_LO_MASK	0	R/W	Mask VBUS_LO Fault Interrupt 0 = VBUS_LO fault interrupt can work (default) 1 = Mask VBUS_LO fault interrupt VBUS_LO_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST
D[1]	VBUS_HI_MASK	0	R/W	Mask VBUS_HI Fault Interrupt 0 = VBUS_HI fault interrupt can work (default) 1 = Mask VBUS_HI fault interrupt VBUS_HI_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST
D[0]	CONV_OCP_MASK	0	R/W	Mask CONV OCP Fault Interrupt 0 = CONV OCP fault interrupt can work (default) 1 = Mask CONV OCP fault interrupt CONV_OCP_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST

REG0x0F: FLT_FLAG3 Register Address [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	BUS_INSERT_FLAG	0	RC	VBUS Insert Event Flag This bit is set to 1 if V _{VBUS} > V _{BUS_PRESENT_R} . 0 = No VBUS insert event 1 = VBUS insert event has occurred It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	NA
D[6]	BAT_INSERT_FLAG	0	RC	VBAT Insert Event FlagIf ADC_EN bit = 1 or $V_{VAC} > V_{VAC_PRESENT_R}$ or $V_{VBUS} > V_{BUS_PRESENT_R}$, this bit will set to 1 when $V_{BATP} > 2.8V$.0 = No VBAT insert event1 = VBAT insert event has occurredIt generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	NA
D[5]	WD_TIMEOUT_FLAG	0	RC	Watchdog Timeout Fault Flag 0 = No watchdog timeout fault 1 = Watchdog timeout fault has occurred It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	REG_RST
D[4]	AC_ABSENT_FLAG	0	RC	VAC Absent Fault Flag This bit is set to 1 if V _{VAC} < V _{VAC_PRESENT_R} - V _{VAC_PRESENT_HYS} . 0 = No VAC absent fault 1 = VAC absent fault has occurred It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	NA
D[3]	BUS_ABSENT_FLAG	0	RC	VBUS Absent Fault Flag It is set to 1 if V _{VBUS} < V _{BUS_PRESENT_R} - V _{BUS_PRESENT_HYS} . 0 = No VBUS absent fault 1 = VBUS absent fault has occurred. It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	NA
D[2]	IBUS_UCP_TIMEOUT_ FLAG	0	RC	IBUS UCP Timeout Fault Flag 0 = No IBUS UCP timeout fault 1 = IBUS UCP timeout fault has occurred It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	NA
D[1]	ADC_DONE_FLAG	0	RC	ADC Conversion Complete Flag In 1-shot conversion mode, this bit is set to 1 after ADC conversion of all enabled channels is complete. 0 = Normal 1 = ADC conversion complete. It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	NA
D[0]	PIN_DIAG_FLAG	0	RC	Pin Diagnosis Fail Flag When charging is enabled, some conditions are checked on the C_{FLY} and VOUT to assure proper operation. 0 = Normal 1 = C_{FLY} or VOUT short fault has occurred It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	REG_RST

REG0x10: FLT_INT_MASK3 Register Address [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	BUS_INSERT_MASK	0	R/W	Mask VBUS Insert Event Interrupt 0 = VBUS insert event interrupt can work (default) 1 = Mask VBUS insert event interrupt BUS_INSERT_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST
D[6]	BAT_INSERT_MASK	0	R/W	Mask VBAT Insert Event Interrupt 0 = VBAT insert event interrupt can work (default) 1 = Mask VBAT insert event interrupt BAT_INSERT_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST
D[5]	WD_TIMEOUT_MASK	0	R/W	Mask Watchdog Timeout Fault Interrupt 0 = watchdog timeout fault interrupt can work (default) 1 = Mask watchdog timeout fault interrupt WD_TIMEOUT_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST
D[4]	AC_ABSENT_MASK	0	R/W	Mask VAC Absent Fault Interrupt 0 = VAC absent fault interrupt can work (default) 1 = Mask VAC absent fault interrupt AC_ABSENT_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST
D[3]	BUS_ABSENT_MASK	0	R/W	Mask VBUS Absent Fault Interrupt 0 = VBUS absent fault interrupt can work (default) 1 = Mask VBUS absent fault interrupt BUS_ABSENT_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST
D[2]	IBUS_UCP_TIMEOUT_ MASK	0	R/W	Mask IBUS UCP Timeout Fault Interrupt 0 = IBUS UCP timeout fault interrupt can work (default) 1 = Mask IBUS UCP timeout fault interrupt IBUS_UCP_TIMEOUT_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST
D[1]	ADC_DONE_MASK	0	R/W	Mask ADC Conversion Complete Event Interrupt 0 = ADC conversion complete event interrupt can work (default) 1 = Mask ADC conversion complete event interrupt ADC_DONE_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST
D[0]	PIN_DIAG_MASK	0	R/W	Mask Pin Diagnosis Fail Interrupt 0 = Pin diagnosis fail interrupt can work (default) 1 = Mask pin diagnosis fail interrupt PIN_DIAG_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST

REG0x11: ADC_CTRL Register Address [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	ADC_EN	0	R/W	ADC Conversion Enable 0 = Disabled (default) 1 = Enabled Note: In 1-shot mode when the selected channel conversions are complete, the ADC_EN bit is automatically reset to 0.	REG_RST or Watchdog
D[6]	ADC_RATE	0	R/W	ADC Conversion Mode Control 0 = Continuous conversion (default) 1 = 1-shot conversion	REG_RST
D[5]	VBUS_ADC_DIS	0	R/W	VBUS ADC Control 0 = Enable conversion (default) 1 = Disable conversion	REG_RST
D[4]	IBUS_ADC_DIS	0	R/W	IBUS ADC Control 0 = Enable conversion (default) 1 = Disable conversion	REG_RST
D[3]	VBAT_ADC_DIS	0	R/W	VBAT ADC Control 0 = Enable conversion (default) 1 = Disable conversion	REG_RST
D[2]	IBAT_ADC_DIS	0	R/W	IBAT ADC Control 0 = Enable conversion (default) 1 = Disable conversion	REG_RST
D[1]	TDIE_ADC_DIS	0	R/W	TDIE ADC Control 0 = Enable conversion (default) 1 = Disable conversion	REG_RST
D[0]	Reserved	0	R	Reserved	NA

REG0x12: VBUS_ADC1 Register Address [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:4]	Reserved	0000	R	Reserved	NA
D[3:0]	VBUS_ADC[11:8]	0000	R	Higher 4 bits of the 12-bit ADC VBUS Data (4mV resolution) MSB<3:0>: 8192mV, 4096mV, 2048mV, 1024mV	REG_RST

REG0x13: VBUS_ADC0 Register Address [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:0]	VBUS_ADC[7:0]	00000000	R	Low Byte of the ADC VBUS Data (4mV resolution) LSB<7:0>: 512mV, 256mV, 128mV, 64mV, 32mV, 16mV, 8mV, 4mV	REG_RST

REG0x14: IBUS_ADC1 Register Address [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:4]	Reserved	0000	R	Reserved	NA
D[3:0]	IBUS_ADC[11:8]	0000	R	Higher 4 bits of the 12-bit ADC IBUS Data (2mA resolution) MSB<3:0>: 4096mA, 2048mA, 1024mA, 512mA	REG_RST

REG0x15: IBUS_ADC0 Register Address [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:0]	IBUS_ADC[7:0]	00000000	R	Low Byte of the ADC IBUS Data (2mA resolution) LSB<7:0>: 256mA, 128mA, 64mA, 32mA, 16mA, 8mA, 4mA, 2mA	REG_RST

REG0x16: VBAT_ADC1 Register Address [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:4]	Reserved	0000	R	Reserved	NA
D[3:0]	VBAT_ADC[11:8]	0000	R	Higher 4 bits of the 12-bit ADC VBAT Data (2mV resolution) MSB<3:0>: 4096mV, 2048mV, 1024mV, 512mV	REG_RST

REG0x17: VBAT_ADC0 Register Address [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:0]	VBAT_ADC[7:0]	00000000	R	Low Byte of the ADC VBAT Data (2mV resolution) LSB<7:0>: 256mV, 128mV, 64mV, 32mV, 16mV, 8mV, 4mV, 2mV	REG_RST

REG0x18: IBAT_ADC1 Register Address [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:4]	Reserved	0000	R	Reserved	NA
D[3:0]	IBAT_ADC[11:8]	0000	R	Higher 4 bits of the 12-bit IBAT Data (2mA resolution) MSB<3:0>: 4096mA, 2048mA, 1024mA, 512mA	REG_RST

REG0x19: IBAT_ADC0 Register Address [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:0]	IBAT_ADC[7:0]	00000000	R	Low Byte of ADC IBAT Data (2mA resolution) LSB<7:0>: 256mA, 128mA, 64mA, 32mA, 16mA, 8mA, 4mA, 2mA	REG_RST

REG0x1A: TDIE_ADC Register Address [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:0]	TDIE_ADC[7:0]	00000000		ADC TDIE Data (8-bit) LSB<7:0>: 128°C, 64°C, 32°C, 16°C, 8°C, 4°C, 2°C, 1°C ADC TDIE Temperature Value: = TDIE_ADC[7:0] × 1°C - 40°C	REG_RST

REG0x36: DPDM_DAC Register Address [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:5]	DP_DAC[2:0]	000	R/W	DP Pin Output Driver Voltage Setting $000 = Hi-Z \mod (default)$ $001 = 0V (V_{0P0_VSRC})$ $010 = 0.6V (V_{0P6_VSRC})$ $011 = 1.2V (V_{1P2_VSRC})$ $100 = 2.0V (V_{2P0_VSRC})$ $101 = 2.7V (V_{2P7_VSRC})$ $110 = 3.3V (V_{3P3_VSRC})$ 111 = Reserved Register bits are reset to default value when input source is plugged-in and can be changed after DP/DM detection is complete.	REG_RST or Watchdog
D[4:2]	DM_DAC[2:0]	000	R/W	DM Pin Output Driver Voltage Setting $000 = Hi-Z \mod (default)$ $001 = 0V (V_{0P0_VSRC})$ $010 = 0.6V (V_{0P6_VSRC})$ $011 = 1.2V (V_{1P2_VSRC})$ $100 = 2.0V (V_{2P0_VSRC})$ $101 = 2.7V (V_{2P7_VSRC})$ $110 = 3.3V (V_{3P3_VSRC})$ 111 = Reserved Register bits are reset to default value when input source is plugged-in and can be changed after DP/DM detection is complete.	REG_RST or Watchdog
D[1]	EN_HVDCP	0	R/W	Enable Bit of DP/DM DAC for HVDCP 0 = Disabled (default) 1 = Enabled	REG_RST or Watchdog
D[0]	Reserved	0	R	Reserved	NA

APPLICATION INFORMATION

Input Capacitors (CVAC, CVBUS and CPMID)

Input capacitors are selected by considering two main factors:

 Adequate voltage margin above maximum surge voltage
Not too large voltage margin in order to limit the peak currents drawn from the source and reduce the input noise

For C_{VAC}, use at least a 1µF low ESR bypass ceramic capacitor placed close to the VAC and PGND pins. The C_{VBUS} and C_{PMID} are determined by the minimum capacitance needed for stable operation and the required ESR to minimize the voltage ripple and load step transients. Typically, 10µF or larger X5R ceramic capacitors are sufficient for C_{VBUS} and C_{PMID}. Consider the DC bias derating of the ceramic capacitors. The X5R and X7R capacitors are relatively stable against DC bias and high temperature. Note that the bias effect is more severe with smaller package sizes, so choose the largest affordable package size. Also consider a large margin for the voltage rating for the worst-case transient input voltages.

External OVPFET (Q_{OVP})

The maximum recommended V_{VBUS} input range is 11.5V. If the supplied VAC voltage is above 11.5V, or if regulation functions are needed during load or wall adapter transients, an external OVPFET is recommended between the USB connector and the SGM41600. Choose a low R_{DSON} MOSFET for the OVPFET to minimize power losses.

Flying Capacitors (C_{FLY})

For selection of the C_{FLY} capacitors, the current rating, ESR and the bias voltage derating are critical parameters. The C_{FLY} capacitors are biased to half of the input voltage. To trade-off between efficiency and power density, set the C_{FLY} voltage ripple to the 2% of the V_{VOUT} as a good starting point. The C_{FLY} for each phase can be calculated by equation 8:

$$C_{FLY} = \frac{I_{BAT}}{4f_{SW}V_{CFLY_RPP}} = \frac{I_{BAT}}{8\% f_{SW}V_{OUT}}$$
(8)

where I_{BAT} is the charging current and V_{CFLY_RPP} is the peak-to-peak voltage ripple of the $C_{FLY}.$

Choosing a too small capacitor for C_{FLY} results in lower efficiency and high output voltage/current ripples. However choosing a too large C_{FLY} only provides minor efficiency and output ripple improvements.

The default switching frequency is f_{SW} = 500kHz. It can be adjusted by FSW_SET[2:0] bits in REG0x01. Selecting a low

switching frequency improves the efficiency, but the voltage and current ripples are increased.

Output Capacitor (C_{VOUT})

 C_{VOUT} selection criteria are similar to the C_{FLY} capacitor. Larger C_{VOUT} value results in less output voltage ripple, but due to the dual-phase operation, the C_{VOUT} RMS current is much smaller than C_{FLY} , so smaller capacitance value can be chosen for C_{VOUT} as given in equation 9:

$$C_{\text{VOUT}} = \frac{I_{\text{BAT}} \times t_{\text{DEAD}}}{0.5 \times V_{\text{VOUT} RPP}}$$
(9)

where t_{DEAD} is the dead time between the two phases and $V_{\text{VOUT}_\text{RPP}}$ is the peak-to-peak output voltage ripple and is typically set to the 2% of $V_{\text{VOUT}}.$

 C_{VOUT} is biased to the battery voltage and its nominal value should be derated for battery voltage DC bias. Typically two 10µF, X5R or better grade ceramic capacitors placed close to the VOUT and PGND pins provide stable performance.

External Bootstrap Capacitor (C_{BST})

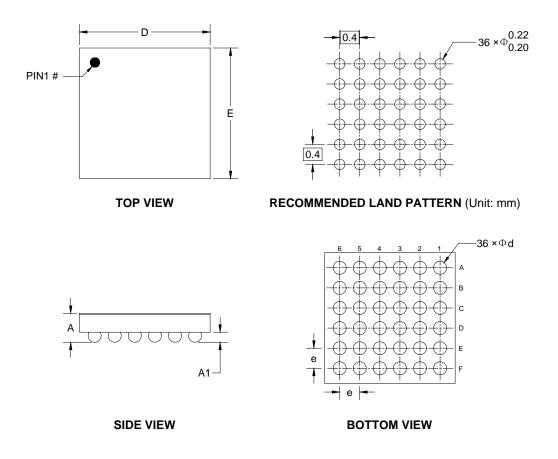
The bootstrap capacitors provide the gate driver supply voltage for the internal high-side switches (Q_{CH1} and Q_{CH2}). Place a 100nF low ESR ceramic capacitor between BST1 and CFH1 pins and another one between BST2 and CFH2 pins.

PCB Layout Guidelines

A good PCB layout is critical for stable operation of the SGM41600. Follow these guidelines for the best results:

- 1. Use short and wide traces for VBUS as it carries high current.
- 2. Minimize connectors wherever possible. Connector losses are significant especially at high currents.
- 3. Use solid thermal vias for better thermal relief.
- 4. Bypass VBUS, PMID and VOUT pins to PGND with ceramic capacitors as close to the device pins as possible.
- 5. Place C_{FLY} capacitors as close as possible to the device with small pad areas to reduce switching noise and EMI.
- 6. Connect or reference all quiet signals to the AGND pin.
- 7. Connect and reference all power signals to the PGND pins (preferably the nearest ones).
- 8. Try not to interrupt or break the power planes by signal traces.

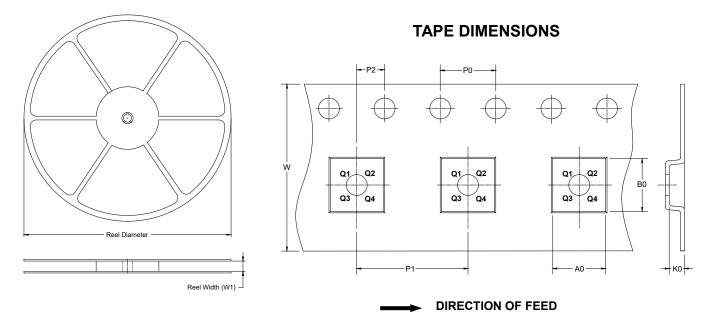
REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

MARCH 2023 – REV.A to REV.A.1	Page
Changed Detailed Description section	
Changes from Original (JULY 2022) to REV.A	Page
Changed from product preview to production data	All

PACKAGE OUTLINE DIMENSIONS

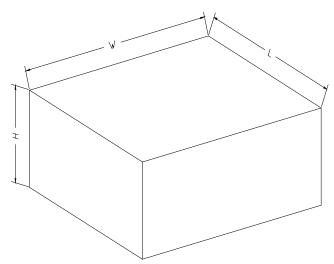
WLCSP-2.6×2.6-36B


Symbol	Dimensions In Millimeters							
Symbol	MIN	MOD	МАХ					
A	0.525	0.575	0.625					
A1	0.180	0.200	0.220					
D	2.570	2.600	2.630					
E	2.570	2.600	2.630					
d	0.230	0.260	0.290					
е	0.400 BSC							

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS


NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
WLCSP-2.6×2.6-36B	13″	12.4	2.75	2.75	0.77	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	DD0002

