

SGM12213A SP3T MIPI RFFE High Power Switch

GENERAL DESCRIPTION

The SGM12213A is a single-pole/three-throw (SP3T) switch, which supports a wide operating frequency from 0.4GHz to 5.8GHz. The device provides low insertion loss and high isolation performance. These specifications make the device appropriate for 2G/3G/4G/5G applications, which need high power processing and high linearity.

No external DC blocking capacitors are required on the RF paths as long as no external DC voltage is applied, which can save PCB area and cost.

The SGM12213A is available in a Green ULGA-1.1× 1.1-9L package.

APPLICATIONS

2G/3G/4G/5G Applications

FEATURES

- Operating Frequency Range: 0.4GHz to 5.8GHz
- Low Insertion Loss
- High Isolation
- MIPI RFFE V2.1 Interface Compatible
- Input 0.1dB Compression Point: 40dBm
- Capable of 1.8V Operation
- No External DC Blocking Capacitors Required
- The ID Pin to Control Two Devices on the Same RFFE Bus with Separate Product ID's
- Available in a Green ULGA-1.1×1.1-9L Package

BLOCK DIAGRAM

Figure 1. SGM12213A Block Diagram

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM12213A	ULGA-1.1×1.1-9L	-40°C to +85°C	SGM12213AYULA9G/TR	2R	Tape and Reel, 3000

MARKING INFORMATION

NOTE: Fixed character for 2R.

<u>YY</u>	
	—— Serial Number

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V _{IO} 2.5V
SDA, SCL Control Voltage2.5V
Maximum Power Handling
40dBm (1:1 VSWR, +90°C, 25% DC)
Junction Temperature+150°C
Storage Temperature Range55°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM2000V
CDM 2000V

RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range	40°C to +85°C
Supply Voltage, V _{IO}	1.65V to 1.95V
SDA Logic Output Low Voltage	0V to (0.2 × V _{IO})
SDA Logic Output High Voltage	(0.8 × V _{IO}) to V _{IO}
SDA, SCL Logic High Current	0.1µA to 5µA

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

(TOP VIEW)

ULGA-1.1×1.1-9L

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	VIO	Supply Voltage.
2	ID	Product ID.
3	RF2	RF Port 2.
4	RFCOM	RF Common Port.
5	RF3	RF Port 3.
6	RF1	RF Port 1.
7	SDA	RFFE Data Signal.
8	SCL	RFFE Clock Signal.
9	GND	Ground.

ELECTRICAL CHARACTERISTICS

 $(T_A = +25^{\circ}C, V_{IO} = 1.65V \text{ to } 1.95V, \text{ typical values are at } V_{IO} = 1.8V, \text{ input and output resistance} = 50\Omega, SDA/SCL = 1.8V/0V, unless otherwise noted.)}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
DC Characteristics							
Supply Voltage	V _{IO}		1.65	1.8	1.95	V	
0 10 1		. Active mode		60	100	1 .	
Supply Current	I _{VIO}	Low power mode		5	10	μA	
Turn-On Time t _{ON} 50%		50% V _{DD} to 90% RF			30	μs	
RF Path Switching Time	t _{SW}	Switching CMD 50% SCL to 90%/10% RF		1	2	μs	
Wake Up Time	t _{WK}	End of low power state 50% SCL to 90% RF		10	15	μs	
VIO Reset Time	t _{RST}	VIO off to it starts to re-power up	10			μs	
RF Characteristics							
		f ₀ = 0.4GHz to 1.0GHz		0.34	0.52		
		f ₀ = 1.0GHz to 2.0GHz		0.40	0.64	1	
Insertion Loss (RF1/RF2/RF3 to RFCOM)	IL	f ₀ = 2.0GHz to 2.7GHz		0.48	0.73	dB	
(f ₀ = 3.0GHz to 3.8GHz		0.51	0.81	1	
		f ₀ = 4.8GHz to 5.8GHz		0.64	1.09	1	
		f ₀ = 0.4GHz to 1.0GHz	32	42			
		f ₀ = 1.0GHz to 2.0GHz	25	35		1	
Isolation (RF1/RF2/RF3 to RFCOM)	ISO	f ₀ = 2.0GHz to 2.7GHz	22	30		dB	
		f ₀ = 3.0GHz to 3.8GHz	17	25		1	
		f ₀ = 4.8GHz to 5.8GHz	15	23]	
-1		f ₀ = 900MHz, P _{IN} = 26dBm		-101	-95		
2 nd Harmonics (RF1/RF2/RF3 to RFCOM)	2f ₀	f ₀ = 900MHz, P _{IN} = 35dBm		-90	-86	dBc	
		f ₀ = 1900MHz, P _{IN} = 32dBm		-93	-80	1	
u.		f ₀ = 900MHz, P _{IN} = 26dBm		-96	-94		
3 rd Harmonics (RF1/RF2/RF3 to RFCOM)	3f ₀	f ₀ = 900MHz, P _{IN} = 35dBm		-80	-75	dBc	
(f ₀ = 1900MHz, P _{IN} = 32dBm		-93	-85	1	
Input Return Loss	RL	f ₀ = 0.4GHz to 2.7GHz		22		٩D	
(RFCOM to RF1/RF2/RF3)	KL	f ₀ = 2.7GHz to 5.8GHz		17		- dB	
Input 0.1dB Compression Point	В	f ₀ = 0.4GHz to 2.7GHz, CW		40		- dBm	
(RFCOM to RF1/RF2/RF3)	P _{0.1dB}	f ₀ = 3.0GHz to 5.8GHz, CW		38] dbiii	
2 nd Order Intermodulation	ation IMD2 $f_0 = 836.5 \text{MHz}, P_{\text{IN}} = 20 \text{dBm} \\ f_1 = 1718 \text{MHz}, P_{\text{IN}} = 20 \text{dBm}$			90		dBc	
		f_0 = 836.5MHz, P_{IN} = 20dBm f_1 = 791.5MHz, P_{IN} = 20dBm		88			
3 rd Order Intermodulation	IMD3	$f_0 = 1760MHz, P_{IN} = 20dBm$ $f_1 = 1950MHz, P_{IN} = 20dBm$		88		dBc	
		$f_0 = 2535MHz$, $P_{IN} = 20dBm$ $f_1 = 2415MHz$, $P_{IN} = 20dBm$		86			

MIPI RFFE READ AND WRITE TIMING

Figure 2. Register Write Command Timing Diagram

Figure 3. Register Read Command Timing Diagram

COMMAND SEQUENCE BIT DEFINITIONS

		Command Frame Bits					Bus	Extended Operation							
Туре	SSC	C[11:8]	C[7]	C[6:5]	C[4]	C[3:0]	Parity Bits	Parity Bits	Park Cycle	Data Frame Bits	Parity Bits	Bus Park Cycle	Data Frame Bits	Parity Bits	Bus Park Cycle
Reg Write	Υ	SA[3:0]	0	10	A[4]	A[3:0]	Y	-	D[7:0]	Υ	Υ	-	-	-	
Reg Read	Υ	SA[3:0]	0	11	A[4]	A[3:0]	Y	Υ	D[7:0]	Υ	Υ	-	-	-	
Reg0 Write	Υ	SA[3:0]	1	D[6:5]	D[4]	D[3:0]	Y	Υ	-	-	-	-	-	-	

Legends:

SSC = Sequence Start Command

SA = Slave Address

A = Register Address

D = Data Bit

REGISTER MAPS

SW_CTRL0

Register Address: 0x00; R/W

Table 1. SW_CTRL0 Register Details

Bits	Bit Name	Description	Default	Туре	B/G	Trig
D[7:4]	Reserved	Reserved.	0000	R/W	No	0, 1, 2
D[3:0]	SW_CTRL	0000: Isolation 0001: RF1 - RFCOM 0100: RF3 - RFCOM 1000: RF2 - RFCOM	0000	R/W	No	0, 1, 2

SPARE

Register Address: 0x01; R/W

Table 2. SPARE Register Details

Bits	Bit Name	Description	Default	Туре	B/G	Trig
D[7:0]	Reserved	Reserved.	00000000	R/W	No	0, 1, 2

RFFE_STATUS

Register Address: 0x1A; R/W

Table 3. RFFE_STATUS Register Details

Bits	Bit Name	Description	Default	Туре	B/G	Trig
D[7]	UDR_RST	Normal Software reset During software reset, this register and all configurable registers are set to their default values except for reserved registers.	0	R/W	No	No
D[6]	COMMAND_FRAME_ PARITY_ERR			R/W	No	No
D[5]	COMMAND_LENGTH_ERR	Command length error.	0	R/W	No	No
D[4]	ADDRESS_FRAME_ PARITY_ERR	Address frame parity error.	0	R/W	No	No
D[3]	DATA_FRAME_PARITY_ ERR	Data frame parity error.	0	R/W	No	No
D[2]	RD_IVD_ADD	Read command to an invalid address.	0	R/W	No	No
D[1]	WR_IVD_ADD	Write command to an invalid address.	0	R/W	No	No
D[0]	BID_GID_ERR	Read command with a BROADCAST_ID or GSID. When this register is read, it will be reset.		R/W	No	No

GROUP SID

Register Address: 0x1B; R and R/W

Table 4. GROUP_SID Register Details

Bits	Bit Name	Description	Default	Туре	B/G	Trig
D[7:4]	Reserved	Reserved.	0000	R	No	No
D[3:0]	GSID	Group slave ID.	0000	R/W	No	No

REGISTER MAPS (continued)

PM_TRIG

Register Address: 0x1C; R/W and W

Table 5. PM_TRIG Register Details

Bits	Bit Name		Description	Default	Туре	B/G	Trig
D[7:6]	PWR_MODE[1:0]	10: Active - Low power co	ormal All registers are set to the default value ow power condition - All ports in isolation All registers are set to the default value			Yes	No
D[5]	TRIGGER_MASK_2	0: TRIGGER_2 enabled 1: TRIGGER_2 disabled	If any one of the three TRIGGER_MASK_x is set to logic '1', the corresponding trigger is disabled, in that case data written to a register associated with the trigger goes directly to the destination register. Otherwise, if the TRIGGER_MASK_x is set to logic '0', incoming data is written to the shadow register, and the destination register is unchanged until its corresponding trigger is asserted.	0	R/W	No	No
D[4]	TRIGGER_MASK_1	0: TRIGGER_1 enabled 1: TRIGGER_1 disabled		0	R/W	No	No
D[3]	TRIGGER_MASK_0	0: TRIGGER_0 enabled 1: TRIGGER_0 disabled		0	R/W	No	No
D[2]	TRIGGER_2	1: Load its associated des	stination registers unchanged tination registers with the data in the parallel d TRIGGER_MASK_2 is set to logic '0'	0	W	Yes	No
D[1]	TRIGGER_1	1: Load its associated des	stination registers unchanged tination registers with the data in the parallel d TRIGGER_MASK_1 is set to logic '0'	0	W	Yes	No
D[0]	TRIGGER_0	1: Load its associated des	stination registers unchanged tination registers with the data in the parallel d TRIGGER_MASK_0 is set to logic '0'	0	W	Yes	No

PRODUCT_ID

Register Address: 0x1D; R

Table 6. PRODUCT_ID Register Details

Bits	Bit Name	Description		Type	B/G	Trig
D[7:0]	PRODUCT_ID PRODUCT_ID Product number. This value will be defined when the bias voltage of the ID pin changes. GND to set to 00000110, VIO voltage for 00000111.		00000111 or 00000110	R	No	No

MANUFACTURER_ID

Register Address: 0x1E; R

Table 7. MANUFACTURER_ID Register Details

Bits	Bit Name Description		Default	Туре	B/G	Trig
D[7:0]	Lower eight bits of Manufacturer ID. MANUFACTURER_ID[7:0] Read-only. Note that during USID programming, the write command sequence is executed on the register, but the value does not change.		01001010	R	No	No

MAN_USID

Register Address: 0x1F; R and R/W

Table 8. MAN_USID Register Details

Bits	Bit Name Description		Default	Туре	B/G	Trig
D[7:6]	Reserved	Reserved.	00	R	No	No
D[5:4]	Upper two bits of Manufacturer ID. MANUFACTURER_ID[9:8] Read-only. Note that during USID programming, the write command sequence is executed on the register, but the value does not change.		00	R	No	No
D[3:0]	USID	Unique slave identifier.	1011	R/W	No	No

POWER ON AND OFF SEQUENCE

Once the VIO voltage drops to 0V, the VIO waits at least 10µs before repowering (see Figure 4).

In order to ensure the correct data transmission, SDA/SCL must be sent after VIO has been applied at least 120ns. There must be at least 15µs to apply RF power after VIO has been applied. Wait a minimum of typically 10µs after RFFE bus is idle to apply an RF signal (see Figure 5).

Do not apply RF power during switching. To ensure this, the RF power needs to be removed before the register write operation that changes the switching mode is completed (see Figure 6).

When the low power mode is used, a delay time of 10µs is required to exit the low power mode (see Figure 7).

> 15µs

Figure 4. Digital Supply Detail

Figure 5. Digital Signal/RF Power-On Detail

Figure 6. Switch Event Timing

Figure 7. Low Power Mode Exit Timing

TYPICAL APPLICATION CIRCUIT

NOTE: * Matching for optimized RF performance, it may be changed according to different applications.

Figure 8. SGM12213A Typical Application Circuit

EVALUATION BOARD LAYOUT

Figure 9. SGM12213A Evaluation Board Layout

SGM12213A

SP3T MIPI RFFE High Power Switch

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

APRIL 2024 – REV.A.1 to REV.A.2	Page
Updated ESD Susceptibility	2
DECEMBER 2022 – REV.A to REV.A.1	Page
Updated Electrical Characteristics	4
Changes from Original (JUNE 2022) to REV.A	Page
Changed from product preview to production data	All

PACKAGE OUTLINE DIMENSIONS ULGA-1.1×1.1-9L

Cymphol	Dimensions In Millimeters						
Symbol	MIN	MOD	MAX				
А	0.530	0.530 0.580 0.630					
A1	0.150	0.150 0.180 0.2					
A2	0.400 BSC						
D	1.000	1.200					
E	1.000	1.200					
е	0.400 BSC						
L	0.150	0.250					
L1	0.050 REF						

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
ULGA-1.1×1.1-9L	7"	8.6	1.26	1.26	0.72	4.0	4.0	2.0	8.0	Q2

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18