

SGM11102S High Isolation SPDT Switch

GENERAL DESCRIPTION

The SGM11102S is a 1-bit control single-pole/double-throw (SPDT) switch, which supports from 0.1GHz to 5.8GHz. The device features low control voltage and high isolation.

The SGM11102S has the ability to integrate the ESD protection circuits to achieve high ESD tolerance.

No external DC blocking capacitors are required on the RF paths as long as no external DC voltage is applied, which can save PCB area and cost.

The SGM11102S is available in a Green ULGA-1×1-6L package.

APPLICATIONS

Multi-Mode 2G/3G/4G/5G and Receive System Applications Pre PA Switching, Reception Bands Switching Applications General Purpose Switching Applications Feedback RX Applications

FEATURES

High Isolation:

 f_0 = 1.0GHz, P_{IN} = 0dBm: 60dB (TYP) f_0 = 2.0GHz, P_{IN} = 0dBm: 57dB (TYP) f_0 = 2.7GHz, P_{IN} = 0dBm: 55dB (TYP) f_0 = 3.8GHz, P_{IN} = 0dBm: 43dB (TYP)

 $f_0 = 5.8GHz, P_{IN} = 0dBm: 32dB (TYP)$

• Low Insertion Loss:

 $f_0 = 1.0 \text{GHz}, P_{\text{IN}} = 0 \text{dBm: } 0.53 \text{dB (TYP)}$ $f_0 = 2.0 \text{GHz}, P_{\text{IN}} = 0 \text{dBm: } 0.55 \text{dB (TYP)}$ $f_0 = 2.7 \text{GHz}, P_{\text{IN}} = 0 \text{dBm: } 0.60 \text{dB (TYP)}$ $f_0 = 3.8 \text{GHz}, P_{\text{IN}} = 0 \text{dBm: } 0.73 \text{dB (TYP)}$ $f_0 = 5.8 \text{GHz}, P_{\text{IN}} = 0 \text{dBm: } 1.02 \text{dB (TYP)}$

Available in a Green ULGA-1×1-6L Package

BLOCK DIAGRAM

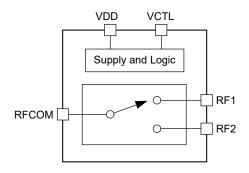


Figure 1. SGM11102S Block Diagram

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	IPERATURE ORDERING		PACKING OPTION	
SGM11102S	ULGA-1×1-6L	-40°C to +85°C	SGM11102SYULI6G/TR	ZU	Tape and Reel, 5000	

MARKING INFORMATION

NOTE: Fixed character for ZU.

YY Serial Number

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

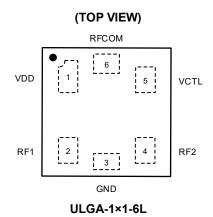
Supply Voltage, V _{DD}	3.6V
Control Voltage, V _{CTL}	3.6V
RF Input Power, P_{IN} ($f_0 = 2.7GHz$)	27dBm
Junction Temperature	+150°C
Storage Temperature Range	-55°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HRM	1000\/

RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range	40°C to +85°C
Operating Frequency Range, f ₀	0.1GHz to 5.8GHz
Supply Voltage, V _{DD}	2.5V to 3.3V
Control High Voltage, V _{CTL_H}	1.35V to 3.3V
Control Low Voltage, V _{CTL_L}	0V to 0.3V

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	VDD	DC Power Supply. Please connect a bypass capacitor with GND terminal for excellent RF performance.
2	RF1	RF I/O Port 1.
3	GND	Ground Terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
4	RF2	RF I/O Port 2.
5	VCTL	DC Control Voltage. Please connect a bypass capacitor with GND terminal for excellent RF performance.
6	RFCOM	RF Common Port.

LOGIC TRUTH TABLE

VCTL	ACTIVE PATH
High	RFCOM to RF1
Low	RFCOM to RF2

ELECTRICAL CHARACTERISTICS

 $(T_A = +25^{\circ}C, V_{DD} = 2.5V \text{ to } 3.3V, \text{ typical values are at } V_{DD} = 2.8V, P_{IN} = 0 \text{dBm, input and output resistance} = 50\Omega, V_{CTL_L} = 0V, V_{CTL_H} = 1.8V, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
DC Characteristics			<u>'</u>	•			
Supply Voltage	V_{DD}		2.5	2.8	3.3	V	
Supply Current	I _{VDD}			20	40	μA	
Control Voltage	$V_{\text{CTL_L}}$		0	0	0.3	V	
Control Voltage	V _{CTL_H}		1.35	1.8	3.3	V	
Control Current	I _{CTL}	V _{CTL_H} = 1.8V		1	2	μA	
Switching Time	t _{SW}	50% V _{CTL} to 10/90% RF		1	2	μs	
RF Characteristics							
		$f_0 = 1.0GHz, P_{IN} = 0dBm$		0.53	0.79	dB	
		$f_0 = 2.0 GHz, P_{IN} = 0 dBm$		0.55	0.82		
Insertion Loss	IL	$f_0 = 2.7GHz$, $P_{IN} = 0dBm$		0.60	0.86		
		$f_0 = 3.8GHz, P_{IN} = 0dBm$		0.73	1.15		
		$f_0 = 5.8GHz, P_{IN} = 0dBm$		1.02	1.45		
	ISO	$f_0 = 1.0GHz, P_{IN} = 0dBm$	46	60		dB	
		$f_0 = 2.0GHz$, $P_{IN} = 0dBm$	42	57			
Isolation (RFCOM to All RF Ports)		$f_0 = 2.7GHz$, $P_{IN} = 0dBm$	38	55			
(ra com to rarra roto)		$f_0 = 3.8GHz, P_{IN} = 0dBm$	34	43		1	
		$f_0 = 5.8 GHz, P_{IN} = 0 dBm$	24	32		1	
Input Power at 0.1dB	P _{0.1dB}	f ₀ = 0.1GHz to 3.0GHz		27		JD	
Compression Point		f ₀ = 3.0GHz to 5.8GHz		25		dBm	
Voltage Otanding Ways Datis	VCME	f ₀ = 0.1GHz to 3.0GHz		1.25			
Voltage Standing Wave Ratio	VSWR	f ₀ = 3.0GHz to 5.8GHz		1.52			

TYPICAL APPLICATION CIRCUIT

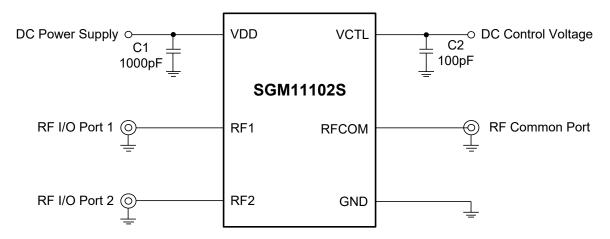


Figure 2. SGM11102S Typical Application Circuit

EVALUATION BOARD LAYOUT

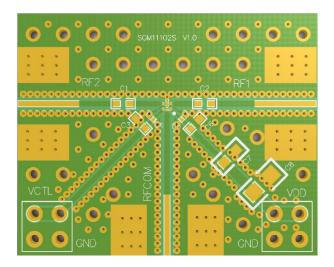
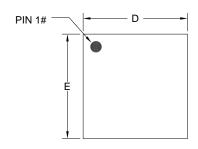
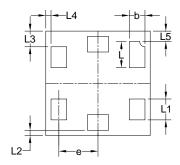
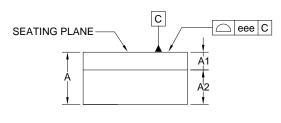




Figure 3. SGM11102S Evaluation Board Layout

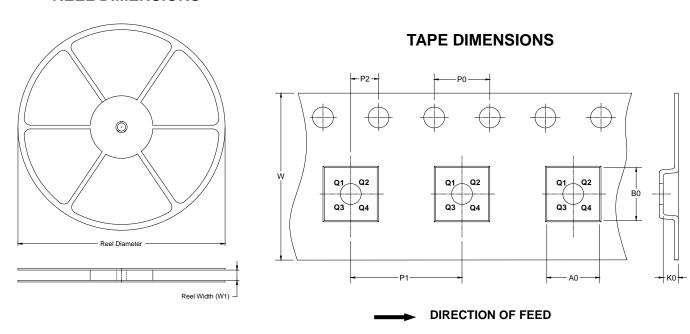

PACKAGE OUTLINE DIMENSIONS ULGA-1×1-6L

TOP VIEW

BOTTOM VIEW

SIDE VIEW

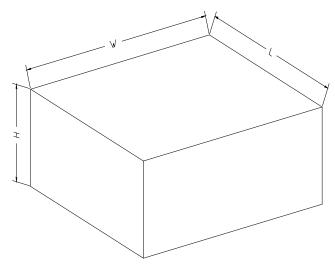
RECOMMENDED LAND PATTERN (Unit: mm)


Symbol	Dimensions In Millimeters					
Symbol	MIN	MOD	MAX			
А	0.450	0.500	0.550			
A1	0.140	0.170	0.200			
A2	0.290	0.330	0.370			
b	0.100	0.150	0.200			
D	0.950	0.950 1.000				
Е	0.950	0.950 1.000				
е	0.375 BSC					
L	0.200	0.200 0.250				
L1	0.150	0.150 0.200				
L2	0.000	0.000 0.050				
L3	0.150 REF					
L4	0.000	0.100				
L5	0.100 REF					
eee	0.100					

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
ULGA-1×1-6L	7"	9.5	1.13	1.13	0.72	4.0	4.0	2.0	8.0	Q2

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18