

SGM41611 I 2 C Controlled High Voltage 4:1 14A Switched-Capacitor Charger

GENERAL DESCRIPTION

The SGM41611 is an efficient 14A switched-capacitor battery charging device with I^2C control that can be configured to 6 different operation modes: forward 4:1/2:1/1:1 step-down charging modes and reverse 1:4/1:2/1:1 step-up discharging modes. It can charge single-cell Li-Ion or Li-polymer battery in a wide 3.4V to 21V input voltage range (VBUS) from smart wall adapters or wireless charger. The switched-capacitor architecture is optimized for 50% duty cycle to cut the input current to one-quarter of the battery current and reduce the wiring drops, losses and temperature rise in the application.

A two-channel switched-capacitor topology is used to reduce the required input capacitors and minimize the output ripple. It supports dual input configuration through integrated MUX control and driver for external OVPFETs. It also allows single input with no external OVPFET or single OVPFET.

The SGM41611 is available in a Green WLCSP-4.88× 3.6-108B package.

APPLICATIONS

TYPICAL APPLICATION

Smart Phone, Tablet PC

FEATURES

- **6 Different Operation Modes**
	- **Forward 4:1/2:1/1:1 Step-down Charging Modes**
	- **Reverse 1:4/1:2/1:1 Step-up Discharging Modes**
- **Efficiency Optimized Switched-Capacitor Architecture**
	- **Up to 14A Output Current**
	- **3.4V to 21V Input Voltage Range**
	- **400kHz to 1.5MHz Switching Frequency Setting**
	- **Above 96.8% Forward 4:1 Step-down Mode Efficiency** $(when V_{BAT} = 5V, I_{BAT} = 8A, f_{SW} = 400kHz)$
- **Comprehensive Integrated Protection Feature**
	- **External VUSB/VWPC OVP Control**
	- **Input Over-Voltage Protection (VBUS_OVP)**
	- **Input Under-Voltage Protection (VBUS_UVP)**
	- **Input Over-Current Protection (IBUS_OCP)**
	- **Input Under-Current Protection (IBUS_UCP)**
	- **Input Reverse-Current Protection (IBUS_RCP)**
	- **Output Over-Voltage Protection (VOUT_OVP)**
	- **Battery Over-Voltage Protection (VBAT_OVP)**
	- **IBAT Over-Current Protection (IBAT_OCP)**
	- **CFLY Diagnosis (CFLY_DIAG)**
	- **Switch Peak Over-Current Protection (PEAK_OCP)**
	- **Die Over-Temperature Protection (TDIE_OTP)**
- **9-Channel 12-Bit (Effective) ADC Converter**
	- **VUSB, VWPC, VBUS, IBUS, VOUT, VBAT1, VBAT2, IBAT, TDIE for Monitoring**

SG Micro Corp **www.sg-micro.com**

SEPTEMBER 2024 – REV. A

PACKAGE/ORDERING INFORMATION

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code. XX#XX = Coordinate Information and Wafer ID Number.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

NOTES:

1. For human body model (HBM), all pins comply with ANSI/ESDA/JEDEC JS-001 specifications.

2. For charged device model (CDM), all pins comply with ANSI/ESDA/JEDEC JS-002 specifications.

I 2 C Controlled High Voltage 4:1 SGM41611 14A Switched-Capacitor Charger

RECOMMENDED OPERATING CONDITIONS

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

	1	$\boldsymbol{2}$	$\ensuremath{\mathsf{3}}$	$\pmb{4}$	$\mathbf 5$	6	7	$\bf 8$	$\boldsymbol{9}$	10	11	12	
A	$($ vBUS $)$	$($ vbus $)$	$($ vbus $)$	$($ us BSUB $)$	$($ vusb $)$	(BATN1)	(BATN2)	(vwpc)	$(w$ PCSUB $)$	$($ vbus $)$	VBUS)	$($ vbus $)$	
B	$($ PMID $)$	$($ PMID $)$	$(\begin{array}{c} \text{PMID} \end{array})$	(PMID)	(USBGATE)	(BATP1)	(BATP2)	(wPCGATE)	$($ PMID $)$	$($ PMID $)$	PMID	PMID	
C	$($ CT3A)	$($ CT3A $)$	$($ CT3A $)$	(\texttt{ctsa})	$($ REGN $)$	$($ SRN $)$	$($ SRP $)$	$($ AGND $)$	$(\overrightarrow{c}$	$($ стзв $)$	$(\overline{\text{CTSB}})$	$($ стзв $)$	
D	$($ CT3A $)$	$($ CT3A $)$	$($ CT3A $)$			$\begin{pmatrix} \texttt{CT3A} \end{pmatrix} \begin{pmatrix} \texttt{BST1A} \end{pmatrix} \begin{pmatrix} \texttt{DP} \end{pmatrix} \begin{pmatrix} \texttt{DM} \end{pmatrix} \begin{pmatrix} \texttt{BST1B} \end{pmatrix} \begin{pmatrix} \texttt{CT3B} \end{pmatrix}$				$($ CT3B)	$($ стзв $)$	$($ стзв $)$	
E	$\left(\begin{array}{c}\n\texttt{CT2A}\n\end{array}\right)$	$($ CT2A $)$		$\overrightarrow{c72A}$ $\overrightarrow{C12A}$ $\overrightarrow{C12A}$ $\overrightarrow{C12B}$ \overrightarrow{SCL} \overrightarrow{SDA} $\overrightarrow{C12B}$						$($ CT2B $)$	$\frac{1}{2}$ CT2B $\frac{1}{2}$	$($ CT2B	
F	$\left(\begin{array}{c} \mathsf{CT1A}\end{array}\right)$	$($ CT1A $)$	$($ CT1A $)$			$(CTIA)$ $(BST2A)$ $(CDRVH)$	$\binom{nLPM}{ }$	(SST2B)	$(\text{ct1B}) (\text{ct1B})$		$($ CT1B $)$	$($ CT1B $)$	
G	(vour)	(vour)		$(vour)$ $(vour)$		$(vour)$ $(vour)$ $(vour)$ $(vour)$ $(vour)$ $(vour)$ $(vour)$					(vour)	(vour)	
Н	$($ CB1A $)$	(CB1A)	$($ CB1A $)$	$($ CB1A $)$	(CB2A)	(CB2A)	$($ CB2B $)$	$($ CB2B $)$	$($ CB1B $)$	$($ CB1B $)$	CB1B $\frac{1}{l}$	CB1B	
J	$($ PGND $\}$	$($ PGND $)$	$($ PGND $)$	$($ PGND $)$	$($ PGND $)$	$($ PGND $)$	$($ PGND $)$	$($ PGND $)$	$($ PGND $)$	$($ PGND $)$	$($ PGND $)$	P GND	

WLCSP-4.88×3.6-108B

PIN DESCRIPTION

PIN DESCRIPTION (continued)

NOTE:

1. P = power, AI = analog input, AO = analog output, AIO = analog input/output, DI = digital input, DIO = digital input/output.

ELECTRICAL CHARACTERISTICS

(T_J = -40°C to +125°C, typical values are at T_J = +25°C, unless otherwise specified.)

ELECTRICAL CHARACTERISTICS (continued)

(T_J = -40℃ to +125℃, typical values are at T_J = +25℃, unless otherwise specified.)

ELECTRICAL CHARACTERISTICS (continued)

(T_J = -40°C to +125°C, typical values are at T_J = +25°C, unless otherwise specified.)

ELECTRICAL CHARACTERISTICS (continued)

(T $_{\textrm{\scriptsize{J}}}$ = -40℃ to +125℃, typical values are at T $_{\textrm{\scriptsize{J}}}$ = +25℃, unless otherwise specified.)

ELECTRICAL CHARACTERISTICS (continued)

(T_J = -40°C to +125°C, typical values are at T_J = +25°C, unless otherwise specified.)

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

FUNCTIONAL BLOCK DIAGRAM

Figure 2. Functional Block Diagram

I 2 C REGISTER ADDRESS MAP

All registers are 8-bit and individual bits are named from D[0] (LSB) to D[7] (MSB).

The device I 2 C Address is determined by the state of CDRVL_ADS pin in the POR sequence, as described in I 2 [C Address Setting](#page-51-0) section.

I 2 C REGISTER ADDRESS MAP (continued)

REGISTER AND DATA

Bit Types:

R: Read only

R/W: Read/Write

RC: Read clears the bit

R/WC: Read/Write. Writing a '1' clears the bit. Writing a '0' has no effect.

NOTE: Excepted for the specified bits, all other register bits are reset to their default values if a hard reset is triggered.

REG0x00: DEVICE_INFO0 Register [reset = 0x0A]

REG0x01: DEVICE_INFO1 Register [reset = 0x00]

REG0x02: DEVICE_INFO2 Register [reset = 0x00]

REG0x03: CONTROL1 Register [reset = 0x01]

REG0x04: CONTROL2 Register [reset = 0x05]

REG0x05: VUSB_OVP Register [reset = 0x09]

REG0x06: VWPC_OVP Register [reset = 0x36]

REG0x07: SC_CTRL Register [reset = 0x40]

REG0x08: VBUS&VOUT_OVP Register [reset = 0x0C]

REG0x09: PEAK_OCP Register [reset = 0x00]

REG0x0A: PMID2VOUT_PROT Register [reset = 0x41]

REG0x0B: IBUS_PROT Register [reset = 0x31]

REG0x0C: VBUS_PROT Register [reset = 0xFB]

REG0x0D: VBAT_PROT Register [reset = 0x33]

REG0x0E: IBAT_PROT Register [reset = 0x44]

REG0x0F: PULLDOWN_CTRL Register [reset = 0x80]

REG0x11: FLT_FLAG1 Register [reset = 0x00]

REG0x12: FLT_MASK1 Register [reset = 0x00]

REG0x13: FLT_FLAG2 Register [reset = 0x00]

REG0x14: FLT_MASK2 Register [reset = 0x00]

REG0x15: FLT_FLAG3 Register [reset = 0x00]

REG0x16: FLT_MASK3 Register [reset = 0x00]

REG0x17: FLT_FLAG4 Register [reset = 0x00]

REG0x18: FLT_MASK4 Register [reset = 0x00]

REG0x19: FLT_FLAG5 Register [reset = 0x00]

REG0x1A: FLT_MASK5 Register [reset = 0x00]

REG0x1B: FLT_FLAG6 Register [reset = 0x00]

REG0x1C: FLT_MASK6 Register [reset = 0x00]

REG0x1D: VBATOVP_ALM Register [reset = 0x00]

REG0x20: ADC_CTRL1 Register [reset = 0x00]

REG0x21: ADC_CTRL2 Register [reset = 0x00]

REG0x22: VBUS_ADC1 Register [reset = 0x00]

REG0x23: VBUS_ADC0 Register [reset = 0x00]

REG0x24: VUSB_ADC1 Register [reset = 0x00]

REG0x25: VUSB_ADC0 Register [reset = 0x00]

REG0x26: VWPC_ADC1 Register [reset = 0x00]

REG0x27: VWPC_ADC0 Register [reset = 0x00]

REG0x28: IBUS_ADC1 Register [reset = 0x00]

REG0x29: IBUS_ADC0 Register [reset = 0x00]

NOTE: 1. IBUS_ADC[12:0] bits are reported in two's complement.

REG0x2E: VBAT1_ADC1 Register [reset = 0x00]

REG0x2F: VBAT1_ADC0 Register [reset = 0x00]

REG0x30: VBAT2_ADC1 Register [reset = 0x00]

REG0x31: VBAT2_ADC0 Register [reset = 0x00]

REG0x32: VOUT_ADC1 Register [reset = 0x00]

REG0x33: VOUT_ADC0 Register [reset = 0x00]

REG0x34: IBAT_ADC1 Register [reset = 0x00]

REG0x35: IBAT_ADC0 Register [reset = 0x00]

NOTE: 2. IBAT_ADC[12:0] bits are reported in two's complement.

REG0x36: TDIE_ADC Register [reset = 0x00]

REG0x37: PROT_CTRL1 Register [reset = 0x00]

REG0x38: PROT_CTRL2 Register [reset = 0x00]

REG0x39: PROT_CTRL3 Register [reset = 0x00]

REG0x3A: PROT_CTRL4 Register [reset = 0x00]

REG0xA1: BC1.2_FLAG Register [reset = 0x00]

REG0xA2: BC1.2_MASK Register [reset = 0x00]

REG0xA3: DPDM_DETC Register [reset = 0x00]

REG0xA4: BC1.2_CTRL Register [reset = 0x18]

REG0xA5: DPDM_DAC Register [reset = 0x00]

REG0xA8: USB_STAT Register [reset = 0x00]

REG0xD0: MISC_CTRL1 Register [reset = 0x00]

DETAILED DESCRIPTION

The SGM41611 is an efficient 14A battery charger that can operate in 6 different modes (forward 4:1/2:1/1:1 step-down charging modes and reverse 1:4/1:2/1:1 step-up discharging modes). A two-channel switched-capacitor core is integrated in the device to minimize the ripples and improve efficiency. Two power paths control, a reverse blocking NFET and all other necessary protection features for safe charging are included. A high speed 12-bit ADC converter is also included to provide bus voltage, bus current, battery voltage, battery current, and die temperature information for the charge management host via l 2 C serial interface.

Forward 4:1 Mode & Reverse 1:4 Mode

In forward 4:1 mode, ignoring small energy loss in each switching period in steady state operation, the SGM41611 generates a VOUT voltage of V_{PMID}/4 and is capable of supplying up to 14A output current. In reverse 1:4 operation, it generates a PMID voltage of $4V_{VOUT}$ and is capable of supplying up to 1.5A current. Each channel of the 180° interleaved switched-capacitor charger operates with a fixed 50% duty cycle and reduces the ripple on the output voltage and current. The simplified single channel 4:1/1:4 switched-capacitor charger is shown i[n Figure 3.](#page-47-0)

Selecting high quality C_{FLY} capacitors and proper switching frequency are the key factors for a well performing capacitor voltage divider. Switching frequency selection is a trade-off between efficiency and capacitor size. An optimum switching frequency can be found for any selected $C_{F/Y}$ capacitor to minimize losses.

Forward 2:1 Mode & Reverse 1:2 Mode

The SGM41611 can be configured to operate in forward 2:1 mode or in reverse 1:2 mode, where $Q_{7A}/Q_{7B}/Q_{6A}/Q_{6B}$ are always on. It generates a VOUT voltage of $V_{\text{PMD}}/2$ and is capable of supplying up to 12A output current. In reverse 1:2 operation, it generates a PMID voltage of $2V_{VOUT}$ and is capable of supplying up to 3A current. Each channel of the 180° interleaved switched-capacitor charger operates with a fixed 50% duty cycle and reduces the ripple on the output voltage and current. The simplified single channel 2:1/1:2 switched-capacitor charger is shown in [Figure 4.](#page-47-1)

Figure 4. Power Stage of Single Channel 2:1/1:2 Switched-Capacitor Charger

Forward 1:1 Mode & Reverse 1:1 Mode

The SGM41611 is designed to operate in bidirectional bypass mode when V_{VBUS} is close to the V_{VOUT} . With proper settings, the device enters bypass mode, all switches between VBUS and VOUT are fully turned on, and $Q_{3A}/Q_{3B}/Q_{4A}/Q_{4B}$ are also fully turned on to provide bypass filtering, while the other switches remain off. When V_{BUS} is near V_{VOUT} , the bypass mode offers the best efficiency and the device is capable of sourcing up to 6A. The simplified single channel bypass mode switched-capacitor charger is shown i[n Figure 5.](#page-48-0)

Figure 5. Power Stage of Single Channel 1:1 Switched-Capacitor Charger

The output voltage is close to the input minus a voltage drop caused by the on-resistances of the RBFET plus the four high-side switches of the two channels in parallel:

 R_{EFF} (Bypass mode) \approx R_{DS_QRB} + (R_{DS_Q8A} + R_{DS_Q7A} + R_{DS_Q6A} $+$ R_{DS}_{Q5A}) || (R_{DS}_{Q8B} + R_{DS}_{Q7B} + R_{DS}_{Q6B} + R_{DS}_{Q5B})

where R_{DS} oxx is the on-resistance of the switch Q_{XX} .

Charge System

The SGM41611 is a slave charger device and needs a host. The host must set up all protection functions and disable the main charger before enabling the SGM41611. The host must monitor the nINT interrupts especially during high current charging. It must also communicate with the wall adapter to control the charge current.

[Figure 6](#page-49-0) shows the block diagram of a charge system using the SGM41611 along with other devices. In this system, the SGM41611 can be used to detect the adapter by USB BC1.2 and the PD controller is used to communicate with adapter by PD protocol. When the smart wall adapter is detected, the AP unit controls the switching charger (SGM41516) that powers the load system and the switched capacitor charger (SGM41611) that provides high current charging. The communication between those devices is through I^2C interface.

DETAILED DESCRIPTION (continued)

Figure 6. Simplified Charge System

A typical charge profile for a high-capacity battery using switching charger and switched capacitor charger together is shown in [Figure 7.](#page-49-1) During the trickle charge and pre-charge, the charging is controlled by the switching charger. Once the battery voltage reaches $V_{BAT\; INSENT\;R}$, the adapter can negotiate for a higher bus voltage and enable the SGM41611 for charging (4:1, 2:1 or 1:1 mode). Once the battery voltage approaches the $V_{BATXOVP~AIM}$ point, the SGM41611 will notify the AP to reduce the IBUS current, and the AP will negotiate with adapter for a lower bus voltage to effectively taper the current until a point where the IBUS current ramps down below I_{BUS} UCP F.

Startup Sequence

The SGM41611 is powered from the greater of VUSB, VWPC, VBUS or VOUT (VUSB and VWPC are used as sense input for adapter voltages as well). When V_{VOUT} rises above its UVLO rising threshold and the nLPM pin is connected to high, or V_{VUSB}, V_{WPC} or V_{VBUS} rises above their respective UVLO rising threshold, the I^2C interface is ready for communication and all the registers are reset to default values.

The device does not start charging after power-up, because by default the charger is disabled but the ADC can be enabled and the AP can read the system parameters before enabling charge. The charge can be enabled only if V_{VBUS} > VBUS_PRESENT_R and VVOUT > VBAT_INSERT_R.

Device Power-Up from Battery without Input Source

To reduce the quiescent current and maximize the battery run time when it is the only available source, low power mode can be set by pulling low the nLPM pin to achieve very small battery leakage. In low power mode, the REGN LDO and most of the sensing circuits are turned off, except VUSB_INSERT, VWPC_INSERT and VBUS_PRESENT functions. The SGM41611 exits low power mode when nLPM pin is pulled high or V_{VUSB}/V_{WPC}/V_{VBUS} rises above their respective UVLO rising threshold.

Device Power-Up from Input Source

When an input source is plugged-in and the conditions of V_{VBUS} > $V_{BUS_PRESENT_R}$ and V_{VOUT} > $V_{BAT_INSERT_R}$ are valid, the AP must initialize all protections to the desired thresholds before enabling charge. The protection thresholds that need to be set are VUSB_OVP, VWPC_OVP, VUSB2VOUT_OVP, VWPC2VOUT_OVP, PMID2VOUT_OVP, PMID2VOUT_UVP, VBUS_OVP, VBUS_UVP, IBUS_OCP, IBUS_UCP, IBUS_RCP, VOUT_OVP, VBAT_OVP, IBAT_OCP, PEAK_OCP, and TDIE_OTP. If one of the protection trigger conditions is met, the charger stops switching. It will also be turned off the corresponding external OVPFETs Q_{USB} and Q_{WPC} when VUSB_OVP or VWPC_OVP or VBUS_SC event occurs.

After setting protections, the VBUS voltage is checked to be between $V_{\text{BUS LO}}$ and $V_{\text{BUS HI}}$ to allow forward charge mode operation. Charging is enabled and current flows into the battery when the AP sets forward mode by writing $000/001/010$ in the SCC_MODE[2:0] bits and sets SCC_EN = 1. Then raising the VBUS voltage will increase the battery charge current. When the converter is on, any command to change the charge mode is ignored. To do so, the charging must be disabled first, and then the charge mode can be changed by I^2C serial interface.

The SGM41611 can run the input source type detection if the relevant bits are set. The SGM41611 follows the USB Battery Charging Specification 1.2 (BC1.2) to detect input source (SDP/DCP/CDP) and non-standard adapter through USB D+/D- lines. When the input source type detection is complete, it will set the USB DEVICE CHG FLAG bit to 1 and generate an INT pulse to notify the host. USB_DEVICE_STAT[2:0] bits will be updated to indicate USB or adaptor input source types at the same time.

REGN Management

REGN provides the power required for the analog section. When V_{VOUT} is higher than 3.3V, it is powered by VOUT instead of PMID. A 4.7µF or lager capacitor is required on the REGN pin.

Dual Input Bi-Directional Power Path Management

The SGM41611 has USBGATE and WPCGATE pins to drive two sets of back-to-back N-channel FETs, which select and manage the input power from two different input sources (such as wired and wireless input sources). If the external Q_{WPC} is not populated in the schematic, then leave VWPC, WPCGATE and WPCSUB pins floating. So is USBGATE.

For forward charging operation, USBGATE and WPCGATE can operate in two modes: auto-mode and manual mode. In reverse mode, both sets of FETs can be turned on/off manually.

Forward Auto-Mode

For the OVPFET forward operation, USBGATE and WPCGATE can operates in auto-mode by setting USBGATE_MODE and WPCGATE_MODE to 0. In auto-mode, USBGATE/WPCGATE is automatically turned on and off according to the VUSB/VWPC voltage. Taking USBGATE as an example, when the VUSB input source is inserted, the VUSB voltage exceeds $V_{\text{USB INSET}}$ and not higher than V_{USB_OVP} thresholds, the USBGATE will be automatically turned on after t_{USBGATE_ON_DEG} deglitch time. Outside this range, USBGATE will be automatically turned off.

If the two inputs appear on VUSB and VWPC at the same time, the USBGATE will be turned on with a higher priority, and the WPCGATE will be forcibly turned off; if not, USBGATE or WPCGATE will be turned on according to which input source is inserted first, and the other one will remain off even if a valid source is inserted later. When the running input source is plugged out or OVP failure occurs, the corresponding gate driver will be turned off, and the other gate driver will be turned on after 1ms delay if its input source is valid. The USBGATE STAT and WPCGATE STAT bits indicate the real-time ON/OFF status of USBGATE/ WPCGATE.

Reverse Manual Mode

When the OVPFET operates in reverse mode, it must be turned on/off manually, depending on which port is desired for the reverse output. It will also turn off the corresponding external OVPFET Q_{USB} or Q_{WPC} when VUSB OVP or VWPC_OVP fault occurs.

To enter reverse operation mode, the AP should follow the steps below:

- 1. The AP writes USBGATE_MODE = 1 and USBGATE_EN = 0 and USBFET_ON_DIRECTION = 1, and/or writes WPCGATE MODE = 1 and WPCGATE $EN = 0$ and WPCFET_ON_DIRECTION = 1;
- 2. The AP writes SCC_MODE[2:0] = 011/100/101;
- 3. The AP writes SCC_EN = 1, and SGM41611 starts the reverse operation;
- 4. SGM41611 sets VBUS_PRESENT_FLAG = 1 when V_{VBUS} > V_{BUS} P $RESENT$ R and It generates an INT pulse to notify the AP;
- 5. The AP writes (USBGATE_EN = 1 and USBGATE_CTRL $= 1$) or (WPCGATE EN = 1 and WPCGATE CTRL = 1) depending on which port is desired for the reverse output;
- 6. If VUSB_OVP or VWPC_OVP fault occurs, SGM41611 will turn off the corresponding external OVPFET Q_{USB} or Q_{WPC}

although USBGATE_EN/WPCGATE_EN is still 1. Then it generates an INT pulse to notify the AP, and SCC_EN will not be reset to 0;

7. The AP needs to reset USBGATE_EN = 0 or WPCGATE EN = 0, and can write 1 to the VUSB/VWPC/VBUS pull-down resistor enable bits as needed to discharge the residual energy.

To exit reverse operation mode, the AP should follow the steps below:

- 1. The AP writes USBGATE_EN = 0 or WPCGATE_EN = 0, and SGM41611 turns off the corresponding external OVPFET QUSB or QWPC;
- 2. The AP writes SCC $EN = 0$;
- 3. SGM41611 stops reverse operation and turns off the Q_{RB} ;
- 4. The AP writes USBGATE_MODE = 0 and/or WPCGATE $MODE = 0$;
- 5. The AP can write 1 to the VUSB/VWPC/VBUS pull-down resistor enable bits as needed to discharge the residual energy.

I 2 C Address Setting

In addition to the SGM41611 requiring a 0.22μF MLCC capacitor between the CDRVH and CDRVL_ADS pins to provide driver supply, the CDRVL_ADS pin is also used to set the default I^2C address during the POR procedure. Pull CDRVL_ADS low by a 75kΩ resistor to AGND to select address 0x67. Pull CDRVL_ADS low by a 249kΩ resistor to AGND or leave it floating to select address 0x68. Changes are not allowed after the startup procedure.

ADC

The SGM41611 integrates a fast 9-channel, 12-bit ADC converter to monitor input/output currents and voltages and the temperature of the device. The ADC is controlled by the ADC_CTRLx registers. Setting the ADC_EN bit to 1 enables the ADC. This bit can be used to turn off the ADC and save power when it is not needed. The ADC_RATE bit allows choosing continuous conversion or 1-shot conversion mode. The ADC operates independent of the faults, unless the AP sets the ADC_EN bit to 0.

The ADC can operate if $V_{VBUS} > V_{BUS}$ present R or $V_{VOUT} >$ $V_{BAT INSENT-R}$ condition is valid. Otherwise the ADC conversion is postponed until one of them is satisfied. The ADC readings are valid only for DC values and not for transients.

By default, all ADC channels are converted in continuous conversion mode except the channels disabled by the ADC CTRLx registers. If the 1-shot conversion mode is selected, the ADC DONE FLAG bit is set to 1 when all channels are converted, then the ADC_EN bit is reset to 0. In the continuous conversion mode, the ADC_DONE_FLAG bit is set to 0.

nINT Pin, Flag and Mask Bits

The nINT pin is an open-drain output and must be pulled up to a logic high rail. It is pulled low with a duration of t_{INT} to notify the AP when it is triggered by an event. See the register map for all event flag and control bits.

> Fault Flag nINT I 2 C Flag Read

> > (a)

When an event occurs, a nINT signal is sent to the AP and the corresponding flag bit is set to 1. The flag bit can be read and some of them can be reset only after the fault is cleared. The nINT signal is not re-sent if an event is still present after the flag bit is read, unless another kind of event occurs. If an event mask bit is set, that event will not send nINT signal, but the flag bit is still updated independent of the mask bit.

The INT pulse generation behavior examples are shown in Figure 8.

Input Over-Voltage Protection (VUSB_OVP, VWPC_OVP)

The SGM41611 monitors the adapter voltage on the VUSB/VWPC pin to use the USBGATE/WPCGATE output to control the external OVPFETs Q_{USB}/Q_{WPC} respectively. Taking VUSB_OVP as an example, the VUSB over-voltage protection circuit is powered by VUSB and is enabled if V_{VUSB} rises above V_{USB} INSERT R. If V_{VUSB} is above V_{USB} INSERT R for at least t_{USBGATE} _{ON DEG} time, when USBGATE_MODE bit is set to forward auto-mode, the USBGATE will output drive signal to turn on the external OVPFET Q_{USE} . If the V_{VUSE} reaches the V_{USB} _{OVP} R threshold, the gate voltage starts to drop and eventually the OVPFET Q_{USB} is fully turned off. [Figure 9](#page-53-0) shows the VUSB_OVP and USBGATE operation timings. The V_{USD} _{OVP_R} threshold can be set by I^2C serial interface. The adapter voltage must never exceed the absolute maximum rating of the VUSB/VWPC pin and the external OVPFETs.

Input Short-Circuit Protection (VBUS_SC)

The VBUS SC function monitors the VBUS pin for short-circuit. This function is enabled if the external OVPFETs are turned on or if V_{VBUS} rises above V_{BUS} present R. If the V_{VBUS} falls below 2.5V, the OVPFETs are turned off, and operation is stopped. SCC_EN bit is reset to 0 (disable). Also, VBUS_ABSENT_FLAG bit is set to 1, and an INT pulse is asserted. The device will wait for 512ms before automatically re-enabling and initiating startup sequence.

VBUS Charge Voltage Range (VBUS_LO & VBUS_HI)

The VBUS LO and VBUS HI functions are included to avoid problems due to wrong VBUS setting for forward charging. If V_{VBUS} is beyond the range between V_{BUS LO} and V_{BUS HI}, the device remains in charge initiation operation. Once V_{VBLIS} is within the charge range, forward charging will start and VBUS_LO and VBUS_HI functions will be disabled.

Input, Output and Battery Over-Voltage Protection (VBUS_OVP, VBUS_PK_OVP, VOUT_OVP and VBATx_OVP)

The VBUS OVP, VBUS PK OVP, VOUT OVP and VBAT OVP functions detect input and output voltage conditions. If either input or output voltage is higher than the protection threshold, the operation is stopped and the SCC_EN bit is reset to 0 (disable). The VBUS OVP and VBUS PK OVP functions monitor VBUS pin voltage. The VOUT OVP function monitors VOUT pin voltage. The VBATx_OVP uses BATPx and BATNx remote sense pins to monitor differential voltage between the battery terminals. To minimize the risk of battery terminal short in the manufacturing process, a 100Ω resistor needs to be connected in series to the BATPx and BATNx pin respectively. The VBUS OVP, VOUT OVP and VBATx OVP thresholds can be set by l²C serial interface.

Figure 9. OVPGATE Operation Timing

Bidirectional Bus and Battery Over-Current Protection (IBUS_OCPxx and IBAT_OCP)

The IBUS_OCP function monitors the bidirectional current via Q_{RB} . If SCC EN bit is set to enable forward/reverse operation, the Q_{RB} is turned on and the IBUS OCP function starts detecting the current. If the I_{BIIS} reaches I_{BIIS} ocexx threshold, the device stops operation and resets SCC_EN bit to 0 (disable). The bidirectional battery current is monitored by the voltage across an external series shunt resistor. This differential voltage is measured between SRP and SRN pins. If $I_{BAT\ OCP}$ threshold is reached, the device stops operation and resets SCC EN bit to 0 (disable). The $I_{\text{BUS OCPxx}}$ and I_{BAT_OCP} thresholds can be set by I^2C serial interface.

Input Under-Current Protection (IBUS_UCP)

The IBUS UCP function detects the input current via Q_{RB} during forward charging. After charging is started, the $t_{IBUSUCPBLK}$ timer is enabled and I_{BUS} current is compared with $I_{\text{BUS UCP R}}$. If I_{BUS} cannot exceed $I_{\text{BUS UCP R}}$ within $t_{IBUSUCPBLK}$, the charging will be stopped and SCC EN bit is reset to 0 (disable). If I_{BUS} exceeds $I_{\text{BUS UCP R}}$ when $t_{IBUSUCPBLK}$ times out, from then on, if I_{BUS} falls below the $I_{\text{BUS UCP F}}$ threshold, the charging will be stopped and SCC_EN bit is reset to 0 (disable). The $t_{IBUS-UCP-BLK}$ timer can be set by I²C serial interface.

Input Reverse-Current Protection (IBUS_RCP)

The IBUS RCP function detects the input reverse current via QRB during forward charging. If the reverse current flowing from the battery to the input source reaches IBUS_RCP threshold, the IBUS_RCP_FLAG bit is set to 1 and an INT pulse is generated, the charging will be stopped and SCC_EN bit is reset to 0 (disable).

PMID Charge Voltage Range (PMID2VOUT_UVP & PMID2VOUT_OVP)

The PMID2VOUT_UVP and PMID2VOUT_OVP functions are included to avoid problems caused by abnormal input or output transients during forward or reverse operation. If $(V_{\text{PMID}}/n - V_{\text{VOUT}})$ is beyond the range between $V_{\text{PMID2VOUT-UP}}$ and $V_{PMID2VOUT OVP}$, where n = 1, 2 or 4, depending on the operation mode, the operation will be stopped and SCC_EN bit is reset to 0 (disable). The $V_{\text{PMID2VOUT LIVP}}$ and $V_{\sf PMID2VOUT_OVP}$ thresholds can be set by I 2 C serial interface.

CFLY Diagnosis (PIN_DIAG)

The CFLY diagnosis function identifies the health of flying capacitors before and during forward or reverse operation. The device initialization process is started after SCC_EN bit is set to 1. When V_{VBUS} and/or V_{BAT} are/is in the charge range, the flying capacitors in both channels are pre-charged. A CFLY open/short-circuit is detected if they cannot be charged. If so, the initialization process is stopped and SCC_EN bit is reset to 0 (disable). Even if CFLY capacitors pass the open/short-circuit test in the initialization process, the CFLY diagnosis function remains active and whenever a V_{CFxx} voltage falls, the operation is stopped and SCC_EN bit is reset to 0 (disable). The PIN_DIAG_FLAG bit is set to 1 and an INT pulse is generated as well. During a CFLY short-circuit event, other protection events such as IBUS_OCP, VBAT_OVP or PEAK_OCP may occur.

A CFLY discharge circuit is activated before the internal RBFET (Q_{RB}) is turned on if $V_{VBUS} > V_{BUS}$ present R to prevent over-current stress at the start of charging.

VOUT Short-Circuit Protection (VOUT_SC)

The VOUT SC function monitors the VOUT pin for short-circuit. This function is enabled during forward or reverse operation. If V_{VOUT} falls below V_{OUT_SC} (2.7V) threshold, the operation is stopped and SCC_EN bit is reset to 0 (disable). Also, the PIN_DIAG_FLAG bit is set to 1, and an INT pulse is generated.

Bidirectional Converter Peak Over-Current Protection (PEAK_OCP)

The PEAK OCP function monitors the converter switch operating currents. If the switch current reach peak OCP threshold during forward or reverse operation, the PEAK_OCP_FLAG bit is set to 1 and an INT pulse is generated, the operation is stopped and SCC_EN bit is reset to 0 (disable). The switch peak OCP thresholds can be set by $I²C$ serial interface.

TDIE Over-Temperature Protection (TDIE_OTP)

The TDIE_OTP function prevents operation in over-temperature condition. The die temperature is monitored and if the $T_{\text{DIE OTP R}}$ threshold is reached, the operation is stopped and SCC_EN bit is reset to 0 (disable). The startup sequence cannot be initiated again until the die temperature falls down with a 20℃ hysteresis. The TDIE_OTP threshold can be set by l²C serial interface.

APPLICATION INFORMATION

Input Capacitors (C_{VUSB}, C_{VWPC}, C_{VBUS} and **CPMID)**

Input capacitors are selected by considering two main factors:

1. Adequate voltage margin above maximum surge voltage;

2. Not too large voltage margin in order to limit the peak currents drawn from the source and reduce the input noise.

For C_{VUSB}, C_{WPC} and C_{VBUS}, use low ESR bypass ceramic capacitors placed close to the VUSB/VWPC/VBUS and PGND pins respectively. The C_{PMID} are determined by the minimum capacitance needed for stable operation and the required ESR to minimize the voltage ripple and load step transients. Typically, two 4.7μF or larger X5R ceramic capacitors are sufficient to meet the C_{PMID} requirements of two channels. Consider the DC bias derating of the ceramic capacitors. The X5R and X7R capacitors are relatively stable against DC bias and high temperature. Note that the bias effect is more severe with smaller package sizes, so choose the largest affordable package size. Also consider a large margin for the voltage rating for the worst-case transient input voltages.

External OVPFETs (Q_{USB} and Q_{WPC})

The maximum recommended input range is 21V. If the supplied VUSB or VWPC voltage is above 21V, two sets of back-to-back N-channel OVPFETs are recommended between the adapter inputs and the SGM41611. Choose a low R_{DSON} MOSFET for the OVPFET to minimize power losses.

Flying Capacitors (C_{FLY})

For selection of the C_{FLY} capacitors, the current rating, ESR and the bias voltage derating are critical parameters. The C_{FLY} capacitors are biased to different DC voltages according to the operation mode. To trade-off between efficiency and power density, set the C_{FLY} voltage ripple to the 2% of its DC bias voltage as a good starting point. The C_{FLY} for each phase can be calculated by Equation 1:

$$
C_{FLY} = \frac{I_{BAT}}{8f_{SW}V_{CELY_RPP}} = \frac{I_{BAT}}{16\%f_{SW}V_{DC_CELY}}
$$
(1)

where I_{BAT} is the charging current and $V_{CFLYRPP}$ is the peak-to-peak voltage ripple of the C_{FLY} .

Choosing a too small capacitor for C_{FLY} results in lower efficiency and high output voltage/current ripples. However, choosing a too large C_{FLY} only provides minor efficiency and output ripple improvements.

The default switching frequency is $f_{SW} = 600k$ Hz. It can be adjusted by FSW_SET[2:0] bits in REG0x07. Lower frequency increases efficiency by reducing switching losses but requires larger capacitance to maintain low output ripple and low output impedance. An optimum switching frequency can be found for any selected C_{FLY} capacitor to minimize losses.

Output Capacitor (C_{VOUT})

 C_{VOUT} selection criteria are similar to the C_{FLY} capacitor. Larger C_{VOUT} value results in less output voltage ripple, but due to the dual-phase operation, the C_{VOUT} RMS current is much smaller than C_{FLY} , so smaller capacitance value can be chosen for C_{VOUT} as given in Equation 2:

$$
C_{\text{VOUT}} = \frac{I_{\text{BAT}} \times t_{\text{DEAD}}}{0.5 \times V_{\text{VOUT_RPP}}}
$$
(2)

where t_{DEAD} is the dead time between the two phases and V_{VOUT RPP} is the peak-to-peak output voltage ripple and is typically set to the 2% of V_{OUT} .

 C_{VOUT} is biased to the battery voltage and its nominal value should be derated for battery voltage DC bias. Typically two 10μF, X5R or better grade ceramic capacitors placed close to the VOUT and PGND pins provide stable performance of two channels.

External Bootstrap Capacitor (CBST1 and C_{BST2}

The bootstrap capacitors provide the gate driver supply voltage for the internal switches. Respectively place a 100nF low ESR ceramic capacitor between BST1A and CT3A pins, between BST2A and CT2A pins, between BST1B and CT3B pins and between BST2B and CT2B pins.

PCB Layout Guidelines

A good PCB layout is critical for stable operation of the SGM41611. Follow these guidelines for the best results:

- 1. Use short and wide traces for VBUS as it carries high current.
- 2. Minimize connectors wherever possible. Connector losses are significant especially at high currents.
- 3. Use solid thermal vias for better thermal relief.
- 4. Bypass VBUS, PMID and VOUT pins to PGND with ceramic capacitors as close to the device pins as possible.
- 5. Place C_{FLY} capacitors as close as possible to the device with small pad areas to reduce switching noise and EMI.
- 6. Connect or reference all quiet signals to the AGND pin.
- 7. Connect and reference all power signals to the PGND pins (preferably the nearest ones).
- 8. Try not to interrupt or break the power planes by signal traces.

TYPICAL APPLICATION CIRCUIT

Figure 10. Typical Application Circuit of SGM41611

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

PACKAGE OUTLINE DIMENSIONS WLCSP-4.88×3.6-108B

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

