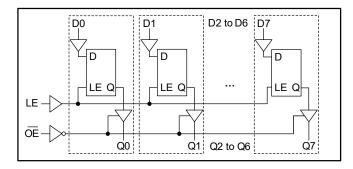


74HC373 Octal D-Type Transparent Latch with 3-State Outputs

GENERAL DESCRIPTION


The 74HC373 is an 8-bit D-type transparent latch with 3-state outputs that is designed for 2.0V to 5.5V V_{CC} operation.

The device is provided with a latch enable (LE) input and an output enable (\overline{OE}) input. When LE is set high, data at the inputs gets access to the latches and the latches are transparent, the latch outputs will vary with corresponding data inputs. When LE is set low, the latches store data that appeared on the inputs for a setup time before the high-to-low transition of LE. When \overline{OE} is high, all outputs are in high-impedance state. \overline{OE} has no influence on the state of the latches.

The clamp diodes of inputs allow the use of current limiting resistors to connect inputs to the voltage exceeding supply voltage.

The 74HC373 is available in Green SOIC-20 and TSSOP-20 packages. It operates over an ambient temperature range of -40°C to +125°C.

LOGIC DIAGRAM

FEATURES

- Wide Operating Voltage Range: 2.0V to 5.5V
- +7.8mA/-7.8mA Output Current
- CMOS Low Power Consumption
- 3-State Non-Inverting Outputs Suitable for Bus-Oriented Applications
- -40°C to +125°C Operating Temperature Range
- Available in Green SOIC-20 and TSSOP-20 Packages

FUNCTION TABLE

CONTROL INPUT		INPUT	INTERNAL	OUTPUT
ŌĒ	LE	Dn	LATCHES	Qn
L	Н	L	L	L
L	Н	Н	Н	Н
L	L	I	L	L
L	L	h	Н	Н
Н	X	X	X	Z

H = High voltage level.

h = High voltage level one setup time before the high-to-low transition of LE.

L = Low voltage level.

I = Low voltage level one setup time before the high-to-low transition of LE.

Z = High-impedance state.

X = Don't care.



PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
74110272	SOIC-20	-40℃ to +125℃	74HC373XS20G/TR	74HC373XS20 XXXXX	Tape and Reel, 1500
74HC373	TSSOP-20	-40°C to +125°C	74HC373XTS20G/TR	0MDXTS20 XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Supply Voltage Range, V_{CC} 0.5V to 7.0V
Input Voltage Range, $V_1^{(2)}$ 0.5V to MIN(7.0V, V_{CC} + 0.5V)
Output Voltage Range, $V_0^{(2)}$ -0.5V to MIN(7.0V, V_{CC} + 0.5V)
Input Clamp Current, I_{IK} (V _I < 0V or V _I > V _{CC}) ±20mA
Output Clamp Current, I_{OK} (V _O < 0V or V _O > V _{CC}) ±20mA
Continuous Output Current, I_0 (V ₀ = 0V to V _{CC}) ±35mA
Continuous Current through V _{CC} or GND±70mA
Junction Temperature ⁽³⁾ +150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM
CDM

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range, V _{CC}	2.0V to 5.5V
Input Voltage Range, Vı	$0V$ to V_{CC}
Output Voltage Range, Vo	$0V$ to V_{CC}
Output Current, I _O	±7.8mA
Input Transition Rise or Fall Rate, $\Delta t / \Delta V$	
V _{CC} = 2.0V	625ns/V (MAX)
V _{CC} = 4.5V	139ns/V (MAX)
V _{CC} = 5.5V	
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

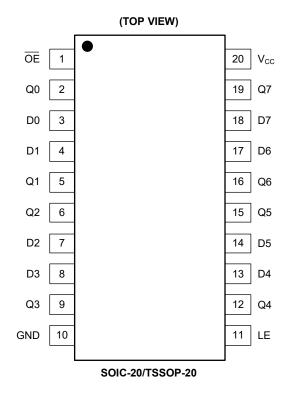
1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

2. The input and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.

3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.


DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

74HC373

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN	NAME	FUNCTION		
1	ŌĒ	Output Enable Input (Active-Low).		
2, 5, 6, 9, 12, 15, 16, 19	Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7	Outputs.		
3, 4, 7, 8, 13, 14, 17, 18	D0, D1, D2, D3, D4, D5, D6, D7	Data Inputs.		
10	GND	Ground.		
11	LE	Latch Enable Input (Active-High).		
20	Vcc	Power Supply.		

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at TA = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
High-Level Input Voltage		V _{CC} = 2.0V	Full	1.50				
	V _{IH}	$V_{CC} = 4.5V$	Full	3.15			V	
		V _{CC} = 5.5V	Full	3.85				
		V _{CC} = 2.0V	Full			0.50		
Low-Level Input Voltage	VIL	V _{CC} = 4.5V	Full			1.35	V	
		V _{CC} = 5.5V	Full			1.65		
		$V_{CC} = 2.0V, I_{O} = -20\mu A$	Full	1.95	1.995			
	V _{он}	V _{CC} = 4.5V, I _O = -20µA	Full	4.45	4.495		v	
High-Level Output Voltage		V _{CC} = 5.5V, I _O = -20µA	Full	5.45	5.495			
		V _{CC} = 4.5V, I _O = -6mA	Full	3.85	4.300			
		V _{cc} = 5.5V, I _o = -7.8mA	Full	4.80	5.270			
		V _{CC} = 2.0V, I _O = 20µA	Full		0.005	0.05		
		V _{CC} = 4.5V, I _O = 20µA	Full		0.005	0.05		
Low-Level Output Voltage	V _{OL}	V _{CC} = 5.5V, I _O = 20µA	Full		0.005	0.05	V	
		V _{CC} = 4.5V, I _O = 6mA	Full		0.170	0.40		
		V _{CC} = 5.5V, I _O = 7.8mA	Full		0.210	0.40		
Input Leakage Current	I _I	$V_{CC} = 5.5V, V_1 = V_{CC}$ or GND	Full		±0.1	±1	μA	
Off-State Output Current	I _{oz}	V_{CC} = 5.5V, V_{I} = V_{IH} or V_{IL} , V_{O} = V_{CC} or GND	Full		±0.1	±5	μA	
Supply Current	I _{cc}	V_{CC} = 5.5V, V_{I} = V_{CC} or GND, I_{O} = 0A	Full		0.1	5	μΑ	
Input Capacitance	Cı		+25°C		3.5		pF	

DYNAMIC CHARACTERISTICS

(See Figure 1 for test circuit. Full = -40°C to +125°C, C_L = 50pF, all typical values are measured at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CON	IDITIONS	TEMP	MIN ⁽¹⁾	TYP	MAX ⁽¹⁾	UNITS	
			V _{CC} = 2.0V	Full	1	40	110		
		Dn to Qn, see Figure 2	V _{CC} = 4.5V	Full	1	12	35	ns	
Propagation Delay ⁽²⁾	<u>ـ</u>	soo niguro 2	V _{CC} = 5.5V	Full	1	9	30		
Propagation Delay	t _{PD}		V _{CC} = 2.0V	Full	1	38	100		
		LE to Qn, see Figure 3	V _{CC} = 4.5V	Full	1	13	35	ns	
		obo riguro o	V _{CC} = 5.5V	Full	1	10	30		
			V _{CC} = 2.0V	Full	1	31	100		
Enable Time ⁽²⁾	t _{EN}	OE to Qn, see Figure 4	V _{CC} = 4.5V	Full	1	9	35	ns	
		See Figure 4	V _{cc} = 5.5V	Full	1	7	30		
		OE to Qn, see Figure 4	V _{CC} = 2.0V	Full	1	15	30	ns	
Disable Time ⁽²⁾	t _{DIS}		V _{CC} = 4.5V	Full	1	8	25		
			V _{cc} = 5.5V	Full	1	8	25		
		Qn, see Figure 2 and Figure 3	V _{CC} = 2.0V	Full	1	25	80	ns	
Transition Time (2)	t _T		V _{CC} = 4.5V	Full	1	7	18		
			V _{cc} = 5.5V	Full	1	6	15		
			V _{CC} = 2.0V	Full	80				
Pulse Width	tw	LE high, see Figure 3	V _{CC} = 4.5V	Full	16			ns	
		See Figure S	V _{CC} = 5.5V	Full	14				
			V _{CC} = 2.0V	Full	40				
Setup Time	t _{s∪}	Dn to LE, see Figure 5	V _{CC} = 4.5V	Full	18			ns	
		see rigule 5	V _{CC} = 5.5V	Full	15				
			V _{CC} = 2.0V	Full	5				
Hold Time	t _H	Dn to LE, see Figure 5	V _{CC} = 4.5V	Full	5			ns	
			V _{CC} = 5.5V	Full	5				
Power Dissipation Capacitance ⁽³⁾	C _{PD}	Per latch, V _I = GNI	D to V _{CC}	+25°C		8.5		pF	

NOTES:

1. Specified by design and characterization, not production tested.

2. t_{PD} is the same as t_{PLH} and t_{PHL} . t_{DIS} is the same as t_{PLZ} and t_{PHZ} . t_{EN} is the same as t_{PZL} and t_{PZH} . t_{T} is the same as t_{THL} and t_{TLH} .

3. C_{PD} is used to determine the dynamic power dissipation (P_D in $\mu W).$

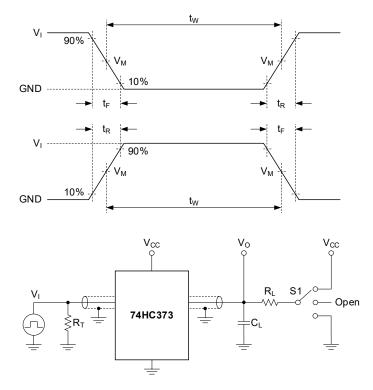
 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o})$ where:

 f_i = Input frequency in MHz.

 $f_o = Output frequency in MHz.$

 C_L = Output load capacitance in pF.

 V_{CC} = Supply voltage in Volts.


N = Number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = Sum of the outputs.

74HC373

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

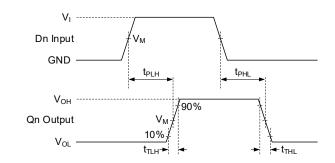
R_L: Load resistance.

 $C_{\mbox{\scriptsize L}}$: Load capacitance (includes jig and probe).

 R_T : Termination resistance (equals to output impedance Z_0 of the pulse generator).

S1: Test selection switch.

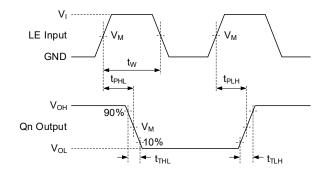
Figure 1. Test Circuit for Measuring Switching Times


Table 1. Test Conditions

SUPPLY VOLTAGE	INPUT		LOAD		S1 POSITION			
Vcc	Vı	t _R , t _F	C∟	R∟	t _{PLH} , t _{PHL}	t _{PLZ} , t _{PZL}	t _{PHZ} , t _{PZH}	
2.0V to 5.5V	V _{CC}	≤ 6.0ns	50pF	1kΩ	Open	V _{CC}	GND	

74HC373

WAVEFORMS

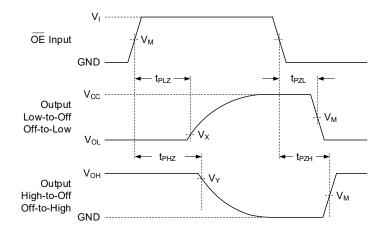


Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 2. Data Input Dn to Output Qn Propagation Delays and Transition Times



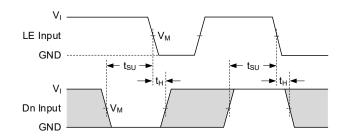
Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. Latch Enable Input LE to Output Qn Propagation Delays, Pulse Width and Transition Times

Test conditions are given in Table 1.


Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 4. Enable and Disable Times

WAVEFORMS (continued)

Test conditions are given in Table 1.

Measurement points are given in Table 2.

The shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 5. Data Setup Times and Hold Times

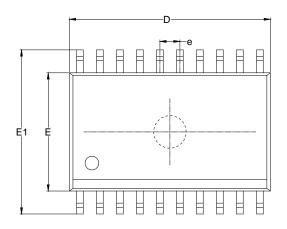
Table 2. Measurement Points

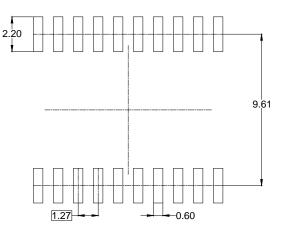
SUPPLY VOLTAGE	INF	TUT	OUTPUT			
Vcc	V ₁ V _M ⁽¹⁾		VM	Vx	VY	
2.0V to 5.5V	V _{CC}	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	0.1 × V _{CC}	$0.9 \times V_{CC}$	

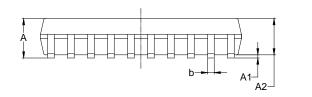
NOTE:

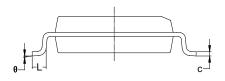
1. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 6.0ns.

REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

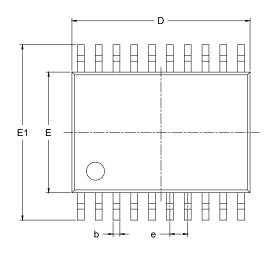

Changes from Original (NOVEMBER 2023) to REV.A

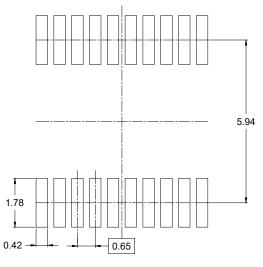

Page

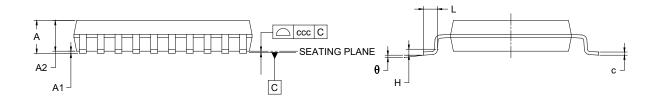

PACKAGE OUTLINE DIMENSIONS SOIC-20

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	-	nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
A	2.350	2.650	0.093	0.104		
A1	0.100	0.300	0.004	0.012		
A2	2.100	2.500	0.083	0.098		
b	0.330	0.510	0.013	0.020		
С	0.204	0.330	0.008	0.013		
D	12.520	13.000	0.493	0.512		
E	7.400	7.600	0.291	0.299		
E1	10.210	10.610	0.402	0.418		
е	1.27 BSC		0.050	BSC		
L	0.400	1.270	0.016	0.050		
θ	0°	8°	0°	8°		


NOTES:


Body dimensions do not include mode flash or protrusion.
This drawing is subject to change without notice.

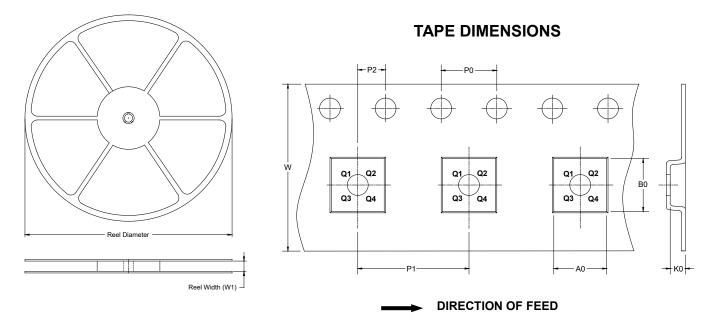

PACKAGE OUTLINE DIMENSIONS

TSSOP-20

RECOMMENDED LAND PATTERN (Unit: mm)

Currence al	Di	mensions In Millimet	ers			
Symbol	MIN	MOD	МАХ			
A	-	-	1.200			
A1	0.050	-	0.150			
A2	0.800	-	1.050			
b	0.190	0.190 -				
с	0.090	-	0.200			
D	6.400	-	6.600			
E	4.300	-	4.500			
E1	6.200	-	6.600			
е		0.650 BSC				
L	0.450	-	0.750			
Н	0.250 TYP					
θ	0°	-	8°			
CCC		0.100				

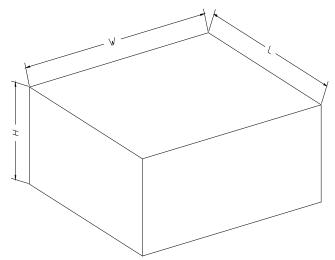
NOTES:


1. Body dimensions do not include mode flash or protrusion.

Dealy annotations are not include include

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-20	13″	24.4	10.90	13.30	3.00	4.0	12.0	2.0	24.0	Q1
TSSOP-20	13″	16.4	6.80	6.90	1.50	4.0	8.0	2.0	16.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	DD0002

