

GENERAL DESCRIPTION

The SGM8307-2 is a dual, low power, low noise, high-speed, voltage feedback amplifier. The device can operate from 2.8V to 12V single supply or $\pm 1.4V$ to $\pm 6V$ dual power supplies. It provides an input range including ground. It also offers an output voltage swing within 250mV of the rails with a 150 Ω load by utilizing complementary common-source outputs and offers a high output current of 110mA. The SGM8307-2 features low differential gain and differential phase errors. It is suitable for single-supply consumer video applications.

The SGM8307-2 features high gain-bandwidth product of 75MHz and high slew rate of 150V/ μ s. So it supports low distortion operation. In contrast to previous low power single-supply amplifiers, decreasing the signal swing enhances the distortion performance of SGM8307-2. The combination of these characteristics makes the device a good choice as ideal input buffer stage of ADC. The SGM8307-2 has a wide dynamic range due to its low noise of 14nV/ \sqrt{Hz} .

The SGM8307-2 is available in a Green SOIC-8 package. It is specified over the extended -40 $^{\circ}$ C to +125 $^{\circ}$ C temperature range.

FEATURES

- High Bandwidth:
 - 135MHz (G = +1)
 - 70MHz (G = +2)
- High Slew Rate: 150V/µs
- Low Noise: 14nV/√Hz (f > 1MHz)
- Support Input Voltage below 0V on Single Supply
- Output Voltage Swing: ±4.75V (V_S = ±5V)
- Wide Supply Range:
 - Single Supply: 2.8V to 12V
 - Dual Supplies: ±1.4V to ±6V
- Quiescent Current: 8.5mA (V_s = +5V)
- -40°C to +125°C Operating Temperature Range
- Available in a Green SOIC-8 Package

APPLICATIONS

ADC Input Driver DAC Output Driver Video Equipment PLL Filter Industrial Equipment

Figure 1. 5MHz, Sallen-Key Low-Pass Filter with 2nd-Order Differential Design on Single-Supply Operation

SGM8307-2

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM8307-2	SOIC-8	-40°C to +125°C	SGM8307-2XS8G/TR	0BOXS8 XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

Х	Х	Х	Х	Х
_		_		_

Vendor Code

— Trace Code

Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, +V _S to -V _S	12V
Differential Input Voltage, VID	±2.5V
Input Voltage Range, V _{IN}	0.5V to (+V _S) + 0.5V
Junction Temperature	+150℃
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility ^{(1) (2)}	
НВМ	±8000V
CDM	±1000V

NOTES:

1. For human body model (HBM), all pins comply with ANSI/ESDA/JEDEC JS-001 specifications.

2. For charged device model (CDM), all pins comply with ANSI/ESDA/JEDEC JS-002 specifications.

RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range-40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

ELECTRICAL CHARACTERISTICS

 $(V_S = \pm 5V, G = +2, R_F = 750\Omega, R_L = 150\Omega$ to GND, Full = -40°C to +125°C, typical values are at $T_A = +25$ °C, unless otherwise noted.)

PARAMI	ETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
Input Characteristic	s	•					•	•	
			N/ 0)/	+25°C		±1.2	±6		
Input Offset Voltage		V _{OS}	$V_{CM} = 0V$	Full			±6.5	mv	
Average Offset Volta	ge Drift	$\Delta V_{OS}/\Delta T$	$V_{CM} = 0V$	Full		20		µV/°C	
				+25°C		±0.1	±0.5		
Input Bias Current		la la	$V_{\rm CM} = 0V$	-40°C to			+2	nA	
				+85°C					
				Full			±20		
Input Bias Current D	rift	ΔI _B /ΔT	V _{CM} = 0V	Full		1		nA/°C	
				+25°C		±0.1	±0.5		
Input Offset Current		los	V _{CM} = 0V	-40°C to			±1	nA	
				Full			±10		
Input Offset Current	Drift	$\Delta I_{OS} / \Delta T$	V _{CM} = 0V	Full		0.5		nA/°C	
Negative Input Volta	ge			Full		-5.2		V	
Positive Input Voltag	e			Full		2.9		V	
Common Mode Rejection Ratio, RTI ⁽¹⁾				+25°C	68	80			
		CMRR		Full	65			dB	
Differential				+25°C		5.0			
Input Capacitance	Common Mode			+25°C		3.5		pF	
				+25°C	100	110			
Open-Loop Voltage	Gain	A _{OL}		Full	97			dB	
Output Characteris	tics								
				+25°C	±4.925	±4.95			
			$R_L = 1k\Omega$ to GND	Full	±4.9				
Output Voltage Swin	g	V _{OUT}		+25°C	±4.7	±4.75		V	
			$R_{L} = 150\Omega$ to GND	Full	±4.6			-	
				+25°C	75	110			
Output Current, Sink	ing and Sourcing	I _{OUT}	$R_{L} = 10\Omega$ to GND	Full	65			mA	
Closed-Loop Output	Impedance		f ≤ 100kHz	+25°C		0.15		Ω	
Power Supply	•								
Operating Voltage R	ange	Vs		+25°C	2.8		12	V	
	0			+25°C		8.5	11		
Quiescent Current		Ι _Q		Full			12	mA	
				+25°C	72	86			
Power Supply Reject	tion Ratio, RTI ⁽¹⁾	PSRR		Full	69			dB	

NOTE: 1. RTI = Referred-to-input.

ELECTRICAL CHARACTERISTICS (continued)

 $(V_S = \pm 5V, G = +2, R_F = 750\Omega, R_L = 150\Omega$ to GND, Full = -40°C to +125°C, typical values are at T_A = +25°C, unless otherwise noted.)

PARAM	ETER	SYMBOL	CONDITION	IS	TEMP	MIN	ТҮР	MAX	UNITS
Dynamic Performa	nce	-							
			G = +1, $V_{OUT} \leq 0.2 V_{P-P}$	G = +1, $V_{OUT} \le 0.2 V_{P-P}$			135		
Small Signal Bandwi	dth		G = +2, $V_{OUT} \le 0.2 V_{P-P}$	+25°C		70			
Sinali-Signal Banuwi	lati	DVV	G = +5, $V_{OUT} \le 0.2 V_{P-P}$		+25°C		18		IVITIZ
			G = +10, $V_{OUT} \le 0.2 V_{P-P}$		+25°C		7.5		
Gain-Bandwidth Product		GBP	G ≥ +10		+25°C		75		MHz
Peaking at a Gain of +1			$V_{OUT} \le 0.2 V_{P-P}$		+25°C		4		dB
Slew Rate		SR	V _{OUT} = 2V _{P-P}		+25°C		150		V/µs
Rise Time		t _R	$V_{OUT} = 0.5 V_{P-P}$		+25°C		6.5		ns
Fall Time		t _F	V _{OUT} = 0.5V _{P-P}		+25°C		7		ns
Settling Time to 0.1%	6	ts	$V_{OUT} = 1V_{P-P}$		+25°C		180		ns
	and Harmonia	LID2		$R_L = 150\Omega$	+25°C		-50		dBc
Harmonia Distortion	2nd-Harmonic	HD2	$\lambda = 2\lambda = 5$	R _L = 500Ω	+25°C		-52		
Harmonic Distortion	and Harmonia		$v_{OUT} - 2v_{P-P}$, I - Sivinz	$R_L = 150\Omega$	+25°C		-36		
	3ra-Harmonic	HD3		R _L = 500Ω	+25°C		-50		
Noise		-							
Input Voltage Noise	Density	en	f > 1MHz		+25°C		14		nV/\sqrt{Hz}
Input Current Noise	Density	i _n	f > 1MHz		+25°C		1.8		pA/√Hz

ELECTRICAL CHARACTERISTICS (continued)

 $(V_S = +5V, G = +2, R_F = 750\Omega, R_L = 150\Omega$ to $V_S/2$, Full = -40°C to +125°C, typical values are at $T_A = +25$ °C, unless otherwise noted.)

PARAM	ETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
Input Characteristic	cs			·			•	
		V	V = 2.5V	+25°C		±1.2	±6	m) (
Input Oliset voltage		V _{OS}	V _{CM} = 2.5V	Full			±6.5	mv
Average Offset Volta	ige Drift	$\Delta V_{OS} / \Delta T$	V _{CM} = 2.5V	Full		20		µV/°C
				+25°C		±0.1	±0.5	
Input Bias Current		Ь	$V_{\rm CM} = 2.5 V$	-40°C to			+2	nA
		5		+85°C				
				Full			±20	
Input Bias Current D	rift	ΔΙ _Β /ΔΤ	V _{CM} = 2.5V	Full		1		nA/°C
				+25°C		±0.1	±0.5	-
Input Offset Current		los	$V_{CM} = 2.5V$	-40°C to +85°C			±1	nA
				Full			±10	
Input Offset Current	Drift	Δl _{os} /ΔT	V _{CM} = 2.5V	Full		0.5		nA/°C
Least Positive Input	Voltage			Full		-0.2		V
Most Positive Input	/oltage			Full		2.9		V
				+25°C	60	70		
Common Mode Reje	ction Ratio, RTI	CMRR		Full	57			dB
	Differential			+25°C		4		_
Input Capacitance	Common Mode			+25°C		4		pF
Onen Leen Veltere Cein				+25°C	90	110		
Open-Loop Voltage	Gain	A _{OL}		Full	87			чБ
Output Characteris	tics		1					1
			$R_L = 1k\Omega$ to 2.5V	+25°C		0.03	0.06	
				Full			0.075	
		V _{OL}		+25°C		0.12	0.2	v
			$R_{L} = 150\Omega$ to 2.5V	Full			0.25	
Output Voltage Swin	g		D (10) 05/	+25°C	4.94	4.97		
			$R_L = 1K\Omega$ to 2.5V	Full	4.925			
		V _{OH}		+25°C	4.8	4.88		
			$R_{L} = 150\Omega$ to 2.5V	Full	4.75			
				+25°C	60	105		
Output Current, Sinking and Sourcing		IOUT	$R_{L} = 10\Omega$ to 2.5V	Full	40			mA
Closed-Loop Output	Impedance		f ≤ 100kHz	+25°C		0.15		Ω
Power Supply				ŀ				•
Operating Voltage R	ange	Vs		+25°C	2.8		12	V
				+25°C		8.2	11	
Quiescent Current		Ι _Q		Full			12	mA
		DODD		+25°C	72	86		15
Power Supply Rejec	tion Ratio, RII	PSRR		Full	69			aB

NOTE: 1. RTI = Referred-to-input.

ELECTRICAL CHARACTERISTICS (continued) (V_S = +5V, G = +2, R_F = 750 Ω , R_L = 150 Ω to V_S/2, Full = -40°C to +125°C, typical values are at T_A = +25°C, unless otherwise noted.)

PARAM	ETER	SYMBOL	CONDITION	IS	TEMP	MIN	ТҮР	MAX	UNITS
Dynamic Performa	nce								
			G = +1, $V_{OUT} \le 0.2 V_{P-P}$		+25°C		125		
Small Signal Bandwi	idth	D\A/	G = +2, $V_{OUT} \le 0.2 V_{P-P}$		+25°C		68		
Sinali-Signal Banuwi	luti	DVV	G = +5, $V_{OUT} \le 0.2 V_{P-P}$		+25°C		17		IVITIZ
			G = +10, V V _{OUT} \leq 0.2V _P	-P	+25°C		7		
Gain-Bandwidth Pro	duct	GBP	G ≥ +10		+25°C		70		MHz
Peaking at a Gain of	aking at a Gain of +1 $V_{OUT} \le 0.2V_{P-P}$			+25°C		4		dB	
Slew Rate		SR	V _{OUT} = 2V _{P-P}		+25°C		140		V/µs
Rise Time		t _R	$V_{OUT} = 0.5 V_{P-P}$		+25°C		7		ns
Fall Time		t _F	$V_{OUT} = 0.5 V_{P-P}$		+25°C		7.5		ns
Settling Time to 0.1%	6	ts	V _{OUT} = 1V _{P-P}		+25°C		180		ns
	and Harmonia	LID2		$R_L = 150\Omega$	+25°C		-53		dBc
Llama ania Distantian	2nd-Harmonic	HD2		$R_L = 500\Omega$	+25°C		-52		
Harmonic Distortion		1102	$v_{OUT} - 2v_{P-P}$, I - SIVI	$R_L = 150\Omega$	+25°C		-36		
	SIG-Harmonic	пD3		R _L = 500Ω	+25°C		-50		
Noise			·						
Input Voltage Noise	Density	en	f > 1MHz		+25°C		14		nV/\sqrt{Hz}
Input Current Noise	Density	i _n	f > 1MHz		+25°C		1.8		pA/√Hz

ELECTRICAL CHARACTERISTICS (continued)

 $(V_s = +3V, G = +2, R_F = 750\Omega, R_L = 150\Omega$ to $V_s/2$, Full = -40°C to +125°C, typical values are at $T_A = +25$ °C, unless otherwise noted.)

PARAM	ETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
Input Characteristic	cs							
		Maa	$V_{\rm ev} = 1.5V_{\rm ev}$	+25°C		±1.2	±6	m\/
Input Onset Voltage		Vos	V _{CM} - 1.5V	Full			±6.5	IIIV
Average Offset Volta	ige Drift	$\Delta V_{OS} / \Delta T$	V _{CM} = 1.5V	Full		20		µV/°C
Input Bias Current		1-	$V_{-1} = 1.5V_{-1}$	+25°C		±0.1	±0.5	n۸
Input bias Current		IB	V _{CM} - 1.5V	Full			±20	ПА
Input Offset Current		laa	$V_{\rm ev} = 1.5V$	+25°C		±0.1	±0.5	nA
input Onset Guirent		105	VCM - 1.3V	Full			±10	
Least Positive Input Voltage				Full		-0.2		V
Most Positive Input Voltage				Full		0.8		V
Common Mode Rejection Ratio RTI ⁽¹⁾		CMRR		+25°C	51	60		dB
		OMINI		Full	48			u D
Input Capacitance				+25°C		2.4		рĒ
Input Capacitance	Common Mode			+25°C		4.4		рг
Open-Loop Voltage Gain		٨		+25°C	90	110		dB
Open-Loop voltage	Gain	AOL		Full	87			ЧD
Output Characteris	tics	-						
			$B_{\rm c} = 1k\Omega$ to 1.5V	+25°C		0.02	0.05	
		V _{OL}		Full			0.06	V
			P = 1500 to 1.5 V	+25°C		0.1	0.15	
Output Voltage Swin	a		NL - 1002210 1.0V	Full			0.2	
Output voltage Swill	9		$R_{\rm c} = 1k\Omega \text{ to } 1.5V$	+25°C	2.95	2.98		
		V	$N_{\rm L} = 1822101.00$	Full	2.94			V
		∨он	P = 1500 to 1.5V	+25°C	2.85	2.9		v
			$N_{\rm L} = 1502210 + 50$	Full	2.8			
Output Current, Sink	ing and Sourcing	lout	$R_L = 10\Omega$ to 1.5V	+25°C	45	60		mA
Closed-Loop Output	Impedance		f ≤ 100kHz	+25°C		0.15		Ω
Power Supply								
Operating Voltage R	ange	Vs		+25°C	2.8		12	V
Quiescent Current				+25°C		8	10	
		IQ		Full			11	
Dowor Supply Datas	tion Patic PTI (1)			+25°C	72	86		dP
Power Supply Rejection Ratio, RTI ⁽¹⁾		PSKK		Full	69			

NOTE: 1. RTI = Referred-to-input.

ELECTRICAL CHARACTERISTICS (continued) (V_S = +3V, G = +2, R_F = 750 Ω , R_L = 150 Ω to V_S/2, Full = -40°C to +125°C, typical values are at T_A = +25°C, unless otherwise noted.)

PARAMI	ETER	SYMBOL	CONDITION	TEMP	MIN	TYP	MAX	UNITS	
Dynamic Performa	nce								
		G = +2, $V_{OUT} \le 0.2 V_{P-P}$			+25°C		62		
Small-Signal Bandwi	idth	BW	G = +5, $V_{OUT} \le 0.2 V_{P-P}$		+25°C		16		MHz
			G = +10, V _{OUT} \leq 0.2V _{P-P}		+25°C		6.5		
Gain-Bandwidth Product		GBP	G ≥ +10		+25°C		65		MHz
Slew Rate		SR	V _{OUT} = 2V _{P-P}		+25°C		120		V/µs
Rise Time	e Time t _R V _{OUT} = 0.5V _{P-P}		+25°C		8		ns		
Fall Time	e t _F V _{OUT} = 0.5V _{P-P}			+25°C		8.5		ns	
Settling Time to 0.1%	6	ts	$V_{OUT} = 1V_{P-P}$		+25°C		185		ns
				$R_L = 150\Omega$	+25°C		-53		- dBc
Harmonia Distortion	2nd-namonic	HDZ	(1 - 2) f - 5MUz	$R_L = 500\Omega$	+25°C		-54		
	2rd Harmonia		$v_{OUT} - 2v_{P-P}$, $I - 5WITZ$	$R_L = 150\Omega$	+25°C		-39		
	Sid-Harmonic	прэ		R _L = 500Ω	+25°C		-55		
Noise									
Input Voltage Noise	Density	en	f > 1MHz		+25°C		14		nV/√Hz
Input Current Noise	Density	i _n	f > 1MHz		+25°C		1.8		pA/√Hz

TYPICAL PERFORMANCE CHARACTERISTICS

At T_A = +25°C, V_S = 12V, unless otherwise noted.

At T_A = +25°C, unless otherwise noted.

At $T_A = +25^{\circ}$ C, $V_S = \pm 5$ V, G = +2, $R_F = 750\Omega$, and $R_L = 150\Omega$ to GND, unless otherwise noted.

Time (50ns/div)

Inverting Large-Signal Step Response

At $T_A = +25^{\circ}$ C, $V_S = \pm 5V$, G = +2, $R_F = 750\Omega$, and $R_L = 150\Omega$ to GND, unless otherwise noted.

At $T_A = +25^{\circ}$ C, $V_S = \pm 5V$, G = +2, $R_F = 750\Omega$, and $R_L = 150\Omega$ to GND, unless otherwise noted.

At $T_A = +25^{\circ}$ C, $V_S = \pm 5$ V, G = +2, $R_F = 750\Omega$, and $R_L = 150\Omega$ to GND, unless otherwise noted.

APPLICATION INFORMATION

Single-Supply Non-Inverting Amplifier

The SGM8307-2 is a high-speed voltage feedback operational amplifier that exhibits unity-gain stability, accommodating both single power supply (2.8V to 12V) and dual power supply (\pm 1.4V to \pm 6V). The input voltages range from below the ground to 2.1V lower than the positive supply. The SGM8307-2 also provides an output voltage swing within 250mV of the rails with a 150 Ω load by employing complementary common-source outputs.

Figure 2 and Figure 3 illustrate the test circuits for electrical characteristics and typical performance characteristics for +5V and +3V single power supply, respectively. The input and output voltages are directly measured from the input and output terminals. The resistors between the non-inverting input and the V_S are utilized for generating a common mode bias voltage.

Figure 2. G = +2, +5V Single-Supply Non-Inverting Amplifier

Figure 3. G = +2, +3V Single-Supply Non-Inverting Amplifier

Dual-Supply Non-Inverting Amplifier

Figure 4 depicts the circuit configuration for the electrical characteristics of a dual power supply. The optional capacitor between the positive and negative power supply pins can generally enhance the performance of the 2nd-harmonic distortion.

Figure 4. G = +2, Dual-Supply Non-Inverting Amplifier

SGM8307-2

APPLICATION INFORMATION (continued)

Driving Capacitive Loads

When the output pin of the SGM8307-2 is directly connected to a capacitive load, it is recommended to add an isolation resistor between the output pin of the operational amplifier and the load capacitor to ensure stability or reduce the AC response peaking, as illustrated in Figure 5.

Figure 5. Unity-Gain Buffer with R_{ISO} Stability Compensation

ADC Input Driver

The SGM8307-2 is well-suited as a single-supply ADC driver due to its wide input/output voltage ranges, excellent distortion performance, and support for single power supply ranging from 2.8V to 12V. Figure 6 shows a typical circuit used by the SGM8307-2 as an ADC driver, capable of elevating the input level. To achieve the specified signal gain (G) and the required upward shift in V_{OUT} (ΔV_{OUT}) when V_{IN} is at its midpoint, the following equations determine the resistor values needed for the optimal performance.

$$NG = G + V_{OUT}/V_S$$
$$R_T = R_F/G$$
$$R_P = R_F/(NG - G)$$
$$R_G = R_F/(NG - 1)$$

where:

$$NG = 1 + R_F/R_G$$
$$V_{OUT} = (G)V_{IN} + (NG - G)V_S$$

Figure 6. DC Level-Shifting Circuit

Non-Inverting Amplifier with Reduced Peaking

To mitigate the peaking of the AC response at low gain, a compensation resistor can be inserted between the input pins of the non-inverting amplifier to augment the noise gain, as illustrated in Figure 7. The equations for noise gain are as follows:

Figure 7. AC Response Peaking Compensation Circuit

APPLICATION INFORMATION (continued)

DAC Output Driver

Utilizing SGM8307-2 as the output driver for high frequency DACs can effectively guarantee their SFDR performance. Figure 8 depicts a typical circuit in which SGM8307-2 is configured as a transimpedance amplifier to convert the DAC's differential output current into differential voltage. Due to the presence of the output capacitors, it is essential to add a feedback capacitor in parallel with the feedback resistor for compensation in order to achieve a flat frequency response. The value of the feedback capacitor can be determined using the following equations:

Figure 8. Differential Transimpedance Amplifier

APPLICATION INFORMATION (continued)

Active Filter

The SGM8307-2 is highly suitable for use in single-supply active filter designs, showcasing its exceptional compatibility and proficiency in this application. Figure 9 illustrates a typical single-supply 2nd-order Sallen-Key (SK) low-pass filter. The cutoff frequency of this filter is $1/2\pi\sqrt{(R_{1A}||R_{1B})R_2C_1C_2}$. Furthermore, the incorporation of two SGM8307-2 channels can be used to configure a differential active filter. An exemplary single-supply 2nd-order differential low-pass SK filter is depicted in Figure 10.

Figure 9. Single-Supply SK Low-Pass Filter

Figure 10. Differential Active Low-Pass Filter

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (NOVEMBER 2024) to REV.A	Page
Changed from product preview to production data	All

PACKAGE OUTLINE DIMENSIONS SOIC-8

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimer In Milli	nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
A	1.350	1.750	0.053	0.069		
A1	0.100	0.250	0.004	0.010		
A2	1.350	1.550	0.053	0.061		
b	0.330	0.510	0.013	0.020		
С	0.170	0.250	0.006	0.010		
D	4.700	5.100	0.185	0.200		
E	3.800	4.000	0.150	0.157		
E1	5.800	6.200	0.228	0.244		
е	1.27	BSC	0.050 BSC			
L	0.400	1.270	0.016	0.050		
θ	0°	8°	0°	8°		

NOTES: 1. Body dimensions do not include mode flash or protrusion.

2. This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-8	13″	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton]_
13″	386	280	370	5	

