

SGM41295S DC Bias Controller for EML

GENERAL DESCRIPTION

The SGM41295S provides DC bias for the laser diode, EA bias, and MPD bias monitor circuits, and it also provides an unregulated negative output generated by an inverting charge pump which is equal to negative input voltage.

The SGM41295S is available in a Green TQFN- $3\times3-16L$ package. It operates over an ambient temperature range of $-40^{\circ}C$ to $+105^{\circ}C$.

APPLICATIONS

EML Fiber Modules

AOC and Transponders for Telecom and Data Center Interconnection

FEATURES

- Negative Charge Pump Output (-1×) with 150mA Maximum Loading Current
- Digitally Programmable EAM Bias and LD Driving Current Source
- Voltage Sources for EAM Bias (-0.2V to -3.2V, 12.5mV/Step) with 100mA Maximum Loading Current
- Current Sources for LD (0mA to 239.5mA, 0.5mA/Step or 0mA to 119.75mA, 0.25mA/Step)
- Backside MPD Current Monitoring (0mA to 10mA)
- Support I²C Interface and up to 1MHz I²C Clock Frequency
- No Inrush Current during Startup
- Charge Pump Output Short Protection
- LD Short/Open and EAM Short Monitoring
- +140°C Over-Temperature Alert Bit
- +160°C Over-Temperature Shutdown
- Available in a Green TQFN-3×3-16L Package

TYPICAL APPLICATION

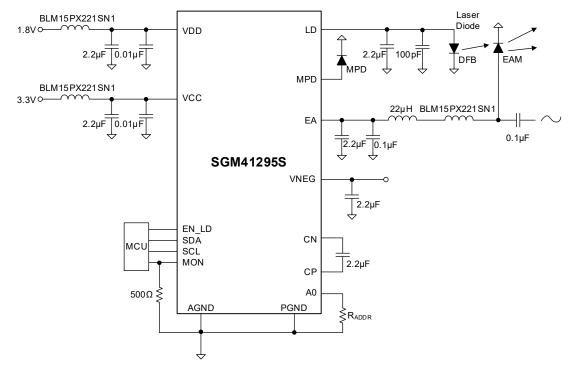


Figure 1. Typical Application Circuit

DC Bias Controller for EML

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM41295S	TQFN-3×3-16L	-40°C to +105°C	SGM41295SGTQ16G/TR	0LBTQ XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

XXXX	
	Vendor Code

Х

Trace Code

— Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

V _{CC} , V _{DD} , SDA, SCL	0.3V to 6V
V _{NEG}	6V to 0.3V
MON, V _{CP} , EN_LD, A0	0.3V to V _{CC} + 0.3V
MPD, V _{EA} , V _{CN}	\dots V _{NEG} - 0.3V to 0.3V
LD	0.3V to V _{DD} + 0.3V
Package Thermal Resistance	
TQFN-3×3-16L, θ _{JA}	39.9°C/W
TQFN-3×3-16L, θ _{JB}	13.8°C/W
TQFN-3×3-16L, θ _{JC (TOP)}	42.5°C/W
TQFN-3×3-16L, θ _{JC (BOT)}	
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility ^{(1) (2)}	
НВМ	±2000V
CDM	±1000V

NOTES:

1. For human body model (HBM), all pins comply with ANSI/ESDA/JEDEC JS-001 specifications.

2. For charged device model (CDM), all pins comply with ANSI/ESDA/JEDEC JS-002 specifications.

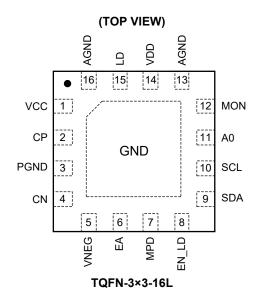
RECOMMENDED OPERATING CONDITIONS

V _{CC}	2.85V to 5.5V
V _{DD}	1.5V to 5.5V
MON Current Output Range	0mA to 10mA
MON Voltage Output Range	0V to 3.3V
SCL, SDA Pull-Up Voltage	2.5V (MIN)
Operating Junction Temperature Range	40°C to +125°C
Operating Ambient Temperature Range	40°C to +105°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	TYPE	FUNCTION
1	VCC	Ρ	Power Supply for the Chip.
2	СР	I/O	Fly Capacitor Positive Connection.
3	PGND	G	Power Ground.
4	CN	I/O	Fly Capacitor Negative Connection.
5	VNEG	0	Charge Pump Output.
6	EA	0	EAM Biasing Output. The output voltage of EA is programmable via the I ² C interface.
7	MPD	Ι	MPD Current Monitor Input. Cathode of MPD is connected to ground and anode of MPD is connected to this pin.
8	EN_LD	Ι	Laser Bias Enable. Logic low disables the laser bias only (not EAM bias). Logic high enables the laser bias. Don't leave it floating.
9	SDA	10	Data for the I ² C Compatible Interface.
10	SCL	ю	Clock for the I ² C Compatible Interface.
11	A0	0	Slave Address Programming. To program the address, a resistor is connected between this pin and ground.
12	MON	0	Multiplexed Monitor Output. There are three monitor signals selected via I ² C interface.
13, 16	AGND	G	Analog Ground.
14	VDD	Р	Power Supply for Laser Diode Current Source.
15	LD	0	Laser Biasing Output. The current of LD is programmable via the I ² C interface.
-	Exposed Pad	G	Exposed Pad. Used for circuit ground connection.

NOTE: I: input, O: output, I/O: input or output, G: ground, P: power for the circuit.

ELECTRICAL CHARACTERISTICS

(V_{CC} = 3.3V, V_{DD} = 1.8V, Full = -40°C to +105°C, typical values are at T_J = +25°C, unless otherwise noted.)

PARAMETERS	SYMBOL	CONDITIONS	TEMP	MIN	ТҮР	MAX	UNITS
Power Supply							
Supply Voltage Range	Vcc		Full	2.85		5.5	V
	V _{UVLO_R}	V _{cc} rising	+25°C	2.55	2.65	2.75	
V _{cc} Under-Voltage Lockout Threshold	V_{UVLO_F}	V _{cc} falling	+25°C		2.5		- V
Power-Up Blanking Time	t _{BLANK}		+25°C		10		ms
Operating Quiescent Current	lα	I _{LD} and EA disabled, no switching (test mode)	+25°C		100	150	μA
LD Current Source							
Maximum Output Current	I _{LD_MAX}	V _{LD} = 1.5V	+25°C		239.5		mA
Current Programming Resolution	I _{RES_MAX}	V _{LD} = 1.5V, LD current gain = 1, 8-bit DAC programming V _{LD} = 1.5V, LD current gain = 1/2,	+25°C	0.1	0.5	0.9	- mA
		8-bit DAC programming	+25°C	0.05	0.25	0.45	
LD Current Source Accuracy		V_{LD} = 1.5V, I_{LD} = 100mA V_{LD} = 1.5V, I_{LD} = 100mA, 10Hz to	+25℃	-3		3	%
LD Current Source Noise	I _{NOISE}	$v_{LD} = 1.5v, i_{LD} = 100mA, 10HZ to 10kHz$	+25°C		2.8		μA_{RMS}
LD Current Source Output DC Impedance		V_{LD} = 1.2V to 1.5V, I_{LD} = 100mA	+25℃		10		kΩ
LD Current Source Full Temperature Drift		I _{LD} = 100mA	Full		13		µA/°C
LD Current Source Headroom Voltage	$V_{\text{LD}_\text{ROOM}}$	V_{DD} = 1.8V, I_{LD} = 200mA	+25°C		0.15	0.26	V
LD Current Source Soft-Start Time	t _{ss_LD}	V _{DD} = 1.8V, I _{LD} = 239.5mA	+25°C		280	500	μs
LD Current Source Open Detection Threshold	V_{LD_OPEN}	V_{DD} - V_{LD} falling	+25℃		50		mV
LD Current Source Short Detection Threshold	$V_{\text{SHORT_LD}}$	V _{LD} falling	+25°C	0.55	0.6	0.65	V
EAM Negative Voltage Bias							
EA Output Voltage Range	V _{EA}	8-bit DAC programming	Full	V _{NEG} + 0.25		-0.2	V
EA Output Voltage DAC Accuracy		V _{EA} = -2V	+25°C	-1		1	%
Voltage Difference between EA and VNEG			Full	0.25		4	V
EA Output Voltage DAC Resolution			+25°C	0	12.5	25	mV
EA Output Voltage Full Temperature Drift		$V_{EA} = -2V$	Full		34		µV/°C
EA Maximum Output Current	$I_{EA_{MAX}}$		+25°C	100			mA
EA Noise	V _{NOISE}	V _{EA} = -2V, I _{EA} = 50mA, 10Hz to 10kHz	+25°C		70		μV_{RMS}
EA Short Detection Threshold	$V_{\text{SHORT}_\text{EAM}}$	V _{EA} rising	+25°C		-100		mV
EA DC Impedance		V_{EA} = -2V, I_{EA} = 0mA to 100mA	+25℃		0.05		Ω
EA Voltage Change Slew Rate			+25°C		3.1		mV/µs
Negative Charge Pump							
Switching Frequency	fs	I _{OUT} = 100mA	+25°C		2		MHz
Maximum Load Current	I _{NEG_MAX}		+25°C	150			mA
Output Impedance		I _{OUT} = 100mA	+25°C		1.9		Ω
MPD Pin							
Current Range			+25°C	0		10	mA
Voltage Range			+25°C	V _{NEG} + 1		0	V

DC Bias Controller for EML

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = 3.3V, V_{DD} = 1.8V, Full = -40^{\circ}C$ to +105°C, typical values are at T_J = +25°C, unless otherwise noted.)

PARAMETERS	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
Multiplexed Monitor Output (EA current sampling ratio 40:1 or 20:1. LD vo	ltage sampli	ng ratio 2.1 TX MPD current samp	ling ratio	1·1)			
		$I_{EA} = 60 \text{mA}$, sampling ratio = 40:1		-5		5	
		I _{EA} = 60mA, sampling ratio = 20:1	+25°C	-5		5	-
MON Pin Current Accuracy		I _{MPD} = 3mA	+25°C	-5		5	%
		I _{MPD} = 10mA	+25°C	-5		5	
		I _{MPD} = 250μA (1:8)	+25°C	-5		5	
		I _{EA} = 60mA, sampling ratio = 40:1	Full	-1		1	
		I _{EA} = 60mA, sampling ratio = 20:1	Full	-1		1	
MON Pin Current Full Temperature Drift		I _{MPD} = 3mA	Full	-0.5		0.5	%
		I _{MPD} = 10mA	Full	-0.5		0.5	
		I _{MPD} = 250μA (1:8)	Full	-0.5		0.5	
		I _{EA} = 60mA, sampling ratio = 40:1	+25°C		0.015		
MON Pin Current Noise		I _{EA} = 60mA, sampling ratio = 20:1	+25°C		0.025		μA_{RMS}
		I _{MPD} = 3mA	+25°C		0.03		
MON Pin Leakage Current	I _{MON_LEAK}	Monitor function disabled, forcing 1V on MON pin	+25°C		0.01	0.2	μA
Logic EN_LD, SDA, SCL							
Input High Threshold	VIH		Full	2.2			V
Input Low Threshold	VIL		Full			0.8	V
Output Low Voltage	V _{OL}	I _{SINK} = 200μA	Full			0.4	V
Thermal Detection							
Thermal Alert Threshold					140		°C
Thermal Shutdown Threshold					160		°C
Thermal Shutdown Hysteresis					20		°C

I²C INTERFACE TIMING CHARACTERISTICS (1)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
		Standard mode	+25°C			100	kHz
SCL Clock Frequency	f _{SCL}	Fast mode	+25°C			400	kHz
		Fast mode plus	+25°C			1	MHz
		Standard mode	+25°C	4.7			μs
LOW Period of the SCL Clock	t _{LOW}	Fast mode	+25°C	1.3			μs
		Fast mode plus	+25°C	0.5			μs
		Standard mode	+25°C	4.0			μs
HIGH Period of the SCL Clock	t _{HIGH}	Fast mode	+25°C	600			ns
		Fast mode plus	+25°C	260			ns
		Standard mode	+25°C	4.7			μs
Bus Free Time between a STOP and a START Conditions	t _{BUF}	Fast mode	+25°C	1.3			μs
		Fast mode plus	+25°C	0.5			μs
		Standard mode	+25°C	4.0			μs
Hold Time for a Repeated START Condition	t _{hd;STA}	Fast mode	+25°C	600			ns
		Fast mode plus	+25°C	260			ns
		Standard mode	+25°C	4.7			μs
Setup Time for a Repeated START Condition	t _{su;STA}	Fast mode	+25°C	600			ns
		Fast mode plus	+25°C	260			ns
		Standard mode	+25°C	250			ns
Data Setup Time	t _{su;DAT}	Fast mode	+25°C	100			ns
		Fast mode plus	+25°C	50			ns
		Standard mode	+25°C	0.05		3.45	μs
Data Hold Time	t _{hd;DAT}	Fast mode	+25°C	0.05		0.9	μs
		Fast mode plus	+25°C	0		0.33	μs
		Standard mode	+25°C	20 + 0.1C _B		1000	ns
Rise Time of SCL Signal after a Repeated START Condition and after an Acknowledge Bit	t _{RCL1}	Fast mode	+25°C	20 + 0.1C _B		1000	ns
		Fast mode plus	+25°C	10		120	ns
		Standard mode	+25°C	20 + 0.1C _B		1000	ns
Rise Time of SCL Signal	t _{RCL}	Fast mode	+25°C	20 + 0.1C _B		300	ns
-		Fast mode plus	+25°C	10		120	ns
		Standard mode	+25°C	20 + 0.1C _B		300	ns
Fall Time of SCL Signal	t _{FCL}	Fast mode	+25°C	20 + 0.1C _B		300	ns
		Fast mode plus	+25°C	10		120	ns
		Standard mode	+25°C	20 + 0.1C _B		1000	ns
Rise Time of SDA Signal	t _{RDA}	Fast mode	+25°C	20 + 0.1C _B		300	ns
		Fast mode plus	+25°C	10		120	ns
		Standard mode	+25°C	20 + 0.1C _B		300	ns
Fall Time of SDA Signal	t _{FDA}	Fast mode	+25°C	20 + 0.1C _B		300	ns

I²C INTERFACE TIMING CHARACTERISTICS ⁽¹⁾ (continued)

PARAMETER	SYMBOL	SYMBOL CONDITIONS TEMP MIN				MAX	UNITS
		Standard mode	+25°C	4.0			μs
Setup Time for STOP Condition	t _{su;STO}	Fast mode	+25°C	600			ns
		Fast mode plus	+25°C	260			ns
		Standard mode	+25°C			0.4	
Capacitive Load for SDA and SCL	C _B	Fast mode	+25°C			0.2	nF
		Fast mode plus	+25°C			0.1	

NOTE:

1. Industry standard I²C timing characteristics according to I²C-Bus Specification. Not tested in production.

I²C INTERFACE TIMING DIAGRAM

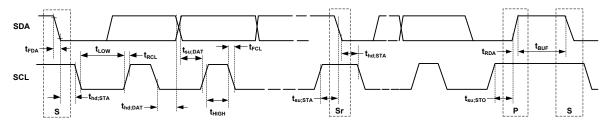
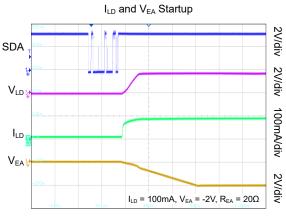
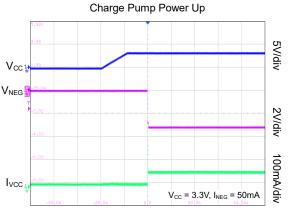
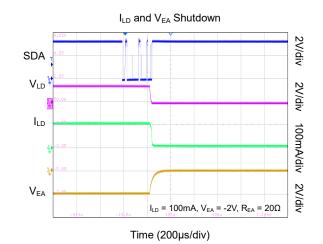



Figure 2. Serial Interface Timing for F/S-Mode

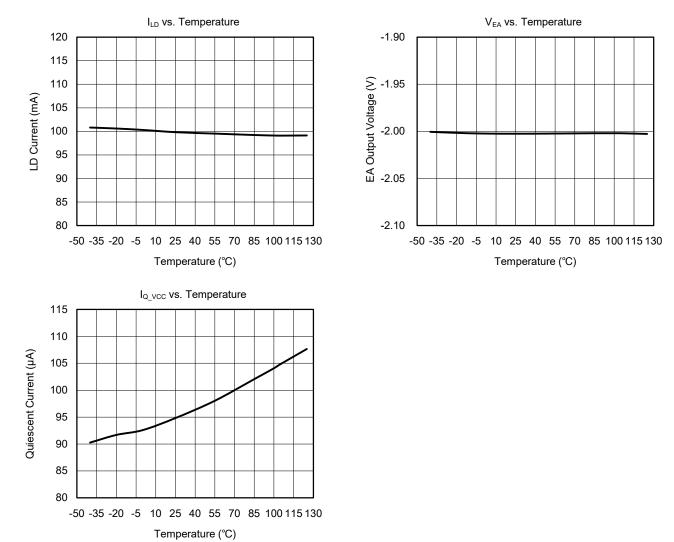


TYPICAL PERFORMANCE CHARACTERISTICS


 T_J = +25°C, V_{CC} = 3.3V, V_{DD} = 1.8V, unless otherwise noted.

Time (200µs/div)

Time (10ms/div)


Charge Pump and V_{EA} Ripple V_{NEG} V_{EA} V_{EA}

Time (500ns/div)

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 T_J = +25°C, V_{CC} = 3.3V, V_{DD} = 1.8V, unless otherwise noted.

SGM41295S

FUNCTIONAL BLOCK DIAGRAM

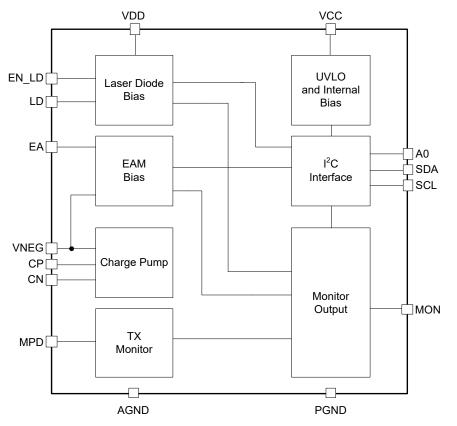


Figure 3. Block Diagram

DETAILED DESCRIPTION

The SGM41295S provides DC bias for the laser diode, EA bias, and MPD bias monitor circuits, and it also provides an unregulated negative output generated by an inverting charge pump which is equal to negative input voltage. This chip supports I^2C interface and other features such as Laser Diode (LD) open/short monitor, EAM short monitor, over-temperature alert, over-temperature protection and so on.

Negative Charge Pump

The SGM41295S uses a switched capacitor charge pump to get an unregulated negative voltage with an absolute value of V_{CC}. The switching signal, which drives the charge pump, is created by an integrated oscillator within the control circuit block. The charge pump switching frequency is from 60kHz to 2MHz. The SGM41295S will automatically adjust the frequency according to V_{CC} and V_{NEG} voltage gap. The oscillator frequency will compensate the output ripple at heavy load condition. When the absolute value of V_{NEG} is smaller than 0.7 × V_{CC}, the charge pump will treat it as over current condition. SGM41295S will limit the input current. The equivalent output resistance of the charge pump is about 1.9 Ω .

Enable and Disable

In order to enable the LD current source, 3 conditions have to be met:

1. VCC voltage is higher than UVLO threshold for longer than 10ms.

2. Logic high on EN_LD pin.

3. Setting $LD_EN = '1'$, by enabling the corresponding bit of the register 0x03h Bit[0].

Pulling EN_LD pin low, setting LD_EN = '0', or setting VCC voltage lower than UVLO threshold can disable the LD current source.

In order to enable the EA, 2 conditions have to be met:

1. VCC voltage is higher than UVLO threshold for longer than 10ms.

2. Setting EA_EN = '1', by enabling the corresponding bit of the register 0x03h Bit[1].

Either setting $EA_EN = '0'$ or VCC voltage lower than UVLO threshold can disable the EA.

Programming LD Current Source

The LD current source is programmed with 8-bit DAC. The added offset current is 112mA, 96mA, 80mA, 64mA, 48mA, 32mA, 16mA or 0mA respectively, which is set by Bit[2:0] in register 0x05h. The LD current is calculated with the following equation:

$$I_{LD} = k \times (I_{OFFSET} + 128 \times (Code/256))$$
(1)

where k is the LD current gain (1 or 1/2), the I_{OFFSET} is the added offset current, and Code is from 0 to 255.

For example, setting Bit[7:0] = 00000010 in register 0x05h and Bit[7:0] =10001000 in register 0x20h can set I_{LD} = 100mA. When V_{CC} is lower than 3V, the recommended maximum set current of LD current source is 200mA.

Programming EA Voltage

The EA voltage is programmed with 8-bit linear coded DAC and is calculated with the following equation:

$$V_{EA} = -3.2 \times (Code/256)$$
 (2)

where Code is from 0 to 255.

For example, setting Bit[7:0] = 10100000 in register 0x21h (Code = A0) can set V_{EA0} = -2V.

MPD Pin Application

EML backside MPD current is monitored by sinking current to VNEG through MPD pin. Please refer to Figure 4 for more detail. When the input current is large, it is recommended to reduce the load resistance.

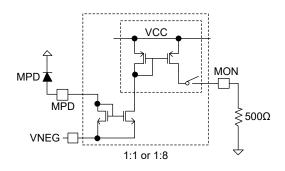


Figure 4. MPD Pin Application

DETAILED DESCRIPTION (continued)

Multiplexed Monitor Output

There are three monitor signals multiplexed for output, and they are selected via the l^2C interface. One of those analog values monitored is selected by setting the register 0x06h, and the selected one is transferred to the MON pin.

EAM Current Sampling

EAM current is sampled and converted into current source in 40:1 or 20:1 ratio. Connect a resistor between MON pin and GND to convert the sampled current into voltage for ADC conversion. The transfer function is shown below:

$$I_{MONx} = \frac{I_{EA}}{S}$$
(3)

where, I_{MONx} is the MON pin output current. S is the sampling ratio which can be set by I^2C interface. Figure 5 shows the typical application circuit of EAM bias.

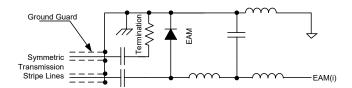


Figure 5. Typical Application Circuit of EAM Bias

FAULT Flag and OT Status Read

LD open status can be read through Bit[4] in register 0x01h. LD current source short status can be read through Bit[5] in register 0x01h. EA pin short status can be read through Bit[3] in register 0x01h. OT_Alert status can be read through Bit[2] in register 0x01h.

When any abnormal event occurs, including LD open, LD current source short, EA pin short and over-temperature alert, the shared flag is set to high, which then can be read through the Fault bit (Bit[1] in register 0x01h).

Under-Voltage Lockout (UVLO)

The SGM41295S integrates an under-voltage lockout block. When VCC voltage is higher than UVLO threshold for longer than 10ms, the device is enabled. The device will be disabled as soon as the VCC voltage falls below the UVLO threshold, and then the device stops responding to any instruction sent to it.

I²C Reset

Setting Bit[2] in register 0x00h to high can reset all digital settings to defaults.

I²C Serial Interface Description

The SGM41295S communicates through an industry standard I^2C compatible interface, to receive data in slave mode. I^2C is a 2-wire serial interface developed by Philips Semiconductor (see I^2C -Bus Specification).

The bus consists of a data line (SDA) and a clock line (SCL) with pull-up structures. When the bus is idle, both SDA and SCL lines are pulled high. All the I^2C compatible devices are connected to the I^2C bus through open-drain I/O pins, SDA and SCL pins. A master device, usually a microcontroller or a digital signal processor, controls the bus.

The master is responsible for generating the SCL signal and device addresses. The master also generates specific conditions that indicate the START and STOP of data transfer. A slave device receives and/or transmits data on the bus under control of the master device.

The SGM41295S works as a slave and supports the following data transfer modes, as defined in the l^2 C-Bus Specification: standard mode (100kbps), fast mode (400kbps) and fast-mode plus (1000kbps). The data transfer protocols for standard mode, fast mode and fast-mode plus are exactly the same, therefore they are referred to as F/S-mode plus in this document. The SGM41295S supports 7-bit addressing, and the LSB enables the write or read function (see Table 1).

DETAILED DESCRIPTION (continued)

The device that initiates the communication is called a master, and the devices controlled by the master are slaves. The master generates the serial clock on SCL, controls the bus access, and generates START and STOP conditions (see Figure 6). A START initiates a new data transfer to a slave. Transitioning SDA from high to low while SCL remains high generates a START condition. A STOP condition ends a data transfer to slave. Transitioning SDA from low to high while SCL remains high generates a STOP condition.

The master then generates the SCL pulses, and transmits the 7-bit address and the read/write direction bit R/\overline{W} on the SDA line. During all transmissions, the master ensures that the data is valid. A valid data condition requires the SDA line to be stable during the entire high period of the clock pulse (see Figure 7). All devices recognize the address sent by the master and compare it to their internal fixed addresses. Only the slave device with a matching address generates an Acknowledgment, ACK, (see Figure 8) by pulling the SDA line low during the entire high period of the SCL cycle. Upon detecting this ACK, the master knows that communication link with a slave has been established.

This device could be programmed for eight slave addresses by connecting a resistor R_{ADDR} between the A0 pin and ground, which is shown in Table 1. And ±5% accuracy resistor is suitable for most applications.

The master generates further SCL cycles to either transmit data to the slave $(R/\overline{W} \text{ bit } = 0)$ or receive data from the slave (R/\overline{W}) bit = 1). In either case, the receiver needs to acknowledge the data sent by the transmitter. So an ACK signal can either be generated by the master or by the slave, depending on which one is the receiver. 9-bit valid data sequences consisting of 8-bit data and 1-bit ACK can continue as long as necessary. To terminate the data transfer, the master generates a STOP condition by pulling the SDA line from low to high while the SCL line is high (see Figure 9). This releases the bus and stops the communication link with the addressed slave. All I²C compatible devices must recognize the STOP condition. Upon the receipt of a STOP condition, all devices know that the bus is released, and they wait for a START condition followed by a matching address.

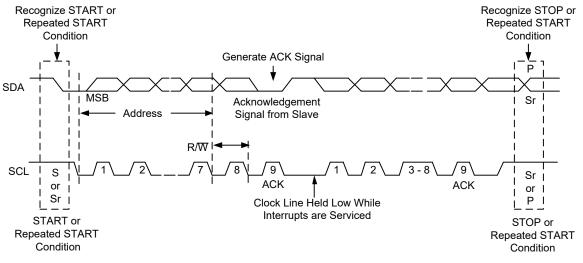
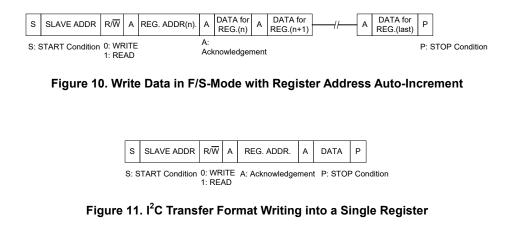

(MSB)		so	GM41295S	ADDRESS			(LSB)	8-Bit Write Value (Hex)	R _{ADDR} (kΩ)
0	0	1	1	0	0	0	R/W	0x30	0
0	0	1	1	0	0	1	R/W	0x32	4.64
0	0	1	1	0	1	0	R/W	0x34	9.1
0	0	1	1	0	1	1	R/W	0x36	15.4
0	0	1	1	1	0	0	R/W	0x38	25.5
0	0	1	1	1	0	1	R/W	0x3A	44.2
0	0	1	1	1	1	0	R/W	0x3C	86.6
0	0	1	1	1	1	1	R/W	0x3E	300

Table 1. SGM41295S Slave Address Byte

SGM41295S

DETAILED DESCRIPTION (continued)

DATA CLK S Р STOP Condition START Condition Figure 6. START and STOP Conditions DATA CLK Data Line Stable; Change of Data Valid Data Allowed Figure 7. Bit Transfer on the Serial Interface Data Output by Transmitter Not Acknowledgement Data Output by Receiver Acknowledgement SCL from Master 8 9 S Clock Pulse for START Acknowledgement Condition Figure 8. Acknowledgement on the I²C Bus Recognize START or Repeated START Condition



SGM41295S

CONTROLS AND LOGIC DIAGRAMS

s	SLAVE ADDR	R/W	А	REG. ADDR(n).	А	Sr	SLAVE ADDR	R/W	А	DATA for REG.(n)	DATA for REG.(n+1)	<u>}//</u>	A	DATA for REG.(last)	Ā	Ρ	
S: \$	START Condition	0: WF	RITE				owledgement eated START Co	1: RE ndition						A: Not Ac P: STOP			

Figure 12. Read Data in F/S-Mode with Register Address Auto-Increment

REGISTER MAP

Image: Provide the second se	Addr	Byte Name	Bit No.	Default Hex	RW	Function
Image: Constraint of the second of			7:3	00	RW	Reserved.
0x01h F 1 R Reserved. 0x01h Status 5 0 R LD Short Flag. This flag will be set high when LD is shorted to GND. 3 0 R LD Short Flag. This flag will be set high when LD is open. 2 0 R LD Short Flag. This flag will be set high when do is open. 2 0 R LD Short Flag. This flag will be set high when die temperature is higher th +140°C. Fault flag will be set high when of a temperature is higher th +140°C. Fault flag will be set high when certain abnormal events happen. 0 x R EN_LD P in Status. 0x02h Sample Ratio 7.1 00 RW 0 x R EN_LD.V P in Status. 0x02h LD EN 0 RW Reserved. 0x03h LD EN 1 1 RW Reserved. 0x04h MPD 7.1 00 RW Reserved. 0x04h MPD 7.1 00 R Reserved. 0x04h MPD Rate 7.1 00 R Reserved. </td <td>0x00h</td> <td>Soft Reset</td> <td>2</td> <td>0</td> <td>RW</td> <td>1: Generate Reset. Reset all digital settings to defaults.</td>	0x00h	Soft Reset	2	0	RW	1: Generate Reset. Reset all digital settings to defaults.
0x01h Final Status 6 0 R Reserved. 0x01h Status 6 0 R LD Open Flag. This flag will be set high when LD is shorted to GND. 1 0 R Vr.A. Short Flag. This flag will be set high when Ver, is shorted to GND. 1 0 R Vr.A. Short Flag. This flag will be set high when OT_Alert is high. 1 0 R Fault Flag. The flag will be set high when OT_Alert is high. 1 0 R Fault Flag. The flag will be set high when OT_Alert is high. 1 0 R Fault Flag. The flag will be set high when OT_Alert is high. 0 0 RW Reserved. Context flag. The flag. This flag will be set high when OT_Alert is high. 0x02h IEA Sample 7:1 00 RW Reserved. 0x03h LD_ENV VEA_EN 7:3 00 RW Reserved. 0x04h MPDR Reserved. 1 RW Reserved. Reserved. 0x04h MEDR Reserved. 1 Reserved. Reserved. Reserved. 0x04h			1:0	0	RW	Reserved.
0x01h Status 5 0 R LD Short Flag. This flag will be set high when LD is shorted to GND. 0x01h 4 0 R LD Open Flag. This flag will be set high when Ve, is shorted to GND. 2 0 R Ve, Short Flag. This flag will be set high when Ve, is shorted to GND. 2 0 R OT. Alert (Over-Temperature Alert). The flag will be set high when die temperature is higher th +140°C. Fault flag will be set so set high when OT_Alert is high. 0 x R EN_LD Pin Status. 0x02h Sample Ratio 0 0 RW Reserved. 0x03h VEA_EN 7:1 00 RW Reserved. 0x03h VEA_EN 7:1 00 RW Reserved. 0x03h VEA_EN 7:1 00 RW Reserved. 0x04h MPD Rarge 0 1 RW Reserved. 0x04h MPD Rarge 7:1 00 R Reserved. 0x04h MPD Rarge 7:4 00 R Reserved.			7	1	R	Reserved.
Ave: Ave: Ave: Depen Flag. This flag will be set high when LD is open. 0x01h Status 3 0 R V _{DA} Short Flag. This flag will be set high when V _{DA} is shorted to GND. 2 0 R OT_Alert (Over-Terguture Alert). The flag will be set high when OT_Alert is high. 1 0 R Fault Flag. The flag will be sets thigh when OT_Alert is high. 1 0 R Fault Flag. The flag will be sets thigh when OT_Alert is high. 0x02h Sample Ratio 7:1 00 RW Reserved. 0x03h VEA_ENN 7:1 00 RW Reserved. 0x03h VEA_ENN 7:3 00 RW Reserved. 0x03h VEA_ENN 7:1 00 R Reserved. 0x04h Range Selection 7:1 00 R Reserved. 0x04h Range Selection 7:1 00 R Reserved. 0x04h Range Selection 7:4 00 R Reserved. 0x00h Ront Selection. The selection.			6	0	R	Reserved.
0x01h Status 3 0 R V _{EA} Short Flag. This flag will be set high when V _{EA} is shorted to GND. 2 0 R OT_Alert (Over-Temperature Alert). The flag will be set high when die temperature is higher th +140°C. Fault flag will be also set high when OT_Alert is high. 1 0 R PAIRt Flag. This flag will be also set high when OT_Alert is high. 0x02h Sample Ratio 0 R EN_LD Pin Status. 0x02h Sample Ratio 0 R R EN_LD Pin Status. 0x03h LD_EN/ VEA_EN 0 RW Reserved. 0x04h MPD Range Selection 0 RW Reserved. 0x04h MPD Range Selection 7.1 00 RW Reserved. 0x04h MPD Range Selection 7.1 00 R Reserved. <td></td> <td></td> <td>5</td> <td>0</td> <td>R</td> <td>LD Short Flag. This flag will be set high when LD is shorted to GND.</td>			5	0	R	LD Short Flag. This flag will be set high when LD is shorted to GND.
No. No. <td></td> <td></td> <td>4</td> <td>0</td> <td>R</td> <td>LD Open Flag. This flag will be set high when LD is open.</td>			4	0	R	LD Open Flag. This flag will be set high when LD is open.
Image: Problem in the state of the	0x01h	Status	3	0	R	V_{EA} Short Flag. This flag will be set high when V_{EA} is shorted to GND.
Image: Note of the system of the sy			2	0	R	OT_Alert (Over-Temperature Alert). The flag will be set high when die temperature is higher than +140°C. Fault flag will be also set high when OT_Alert is high.
Ux02h IEA Sample Ratio 7:1 00 RW Reserved. 0x03h VEA_EN 7:3 00 RW Reserved. 0x03h VEA_EN 7:3 00 RW Reserved. 0x03h VEA_EN 1 RW Reserved. 0x03h VEA_EN 1 RW Reserved. 0x04h Rage Selection 0 1 RW Enable 0: Disable. 0x04h MPD Range Selection 7:1 00 R Reserved. 0x04h MPD Range Selection 7:1 00 R Reserved. 0x04h MPD Range Selection 7:1 00 R Reserved. 0x04h MPD Range Selection 7:4 00 R Reserved. 0x04h LD Gain and Offset Ctrl 7:4 00 R Reserved. 0x05h LD Gain and Offset Ctrl 7:4 00 R Reserved. 0x06h Multiplex Ctrl 7:4 00 R			1	0	R	Fault Flag. The flag will be set high when certain abnormal events happen.
0x02h Ratio Sample Ratio 0 0 RW 1 for 40:1 (lex/luon). 0 for 20:1 (lex/luon). 0 for 20:1 (lex/luon). 0x03h Image: Comparison of the second of the sec			0	х	R	EN_LD Pin Status.
Ratio00RWI (He,Husto), 0 for 20:1 (EgAlaco), 0 for 20:1 (EgAlaco), 0 for 20:1 (EgAlaco),0x03h LD_{EN} 7:300RWReserved.21RWReserved.21RWEnable Ve, Voltage Source. 1: Enable, 0: Disable.0x04h11RWEnable Ve, Voltage Source. 1: Enable, 0: Disable.0x04hMPD Range Selection7:100RReserved.0x04hMPD Range Selection7:100RReserved.0x04hMPD Range Selection7:100RReserved.0x04hMPD Range Selection7:400RReserved.0x04hMPD Cfri7:400RReserved.1. C finding range for MPD is 50µA ~ 250µA (mirror ratio = 1:1), 1: The monitoring range for MPD is 50µA ~ 250µA (mirror ratio = 1:8).1. C finding range for MPD is 50µA ~ 250µA (mirror ratio = 1:4), 1: The monitoring range for MPD is 50µA ~ 250µA (mirror ratio = 1:8).1. D Fin Offset Current Gain Selection. 0: The ILp offset current is 30µA ~ 239.5mA). 1: gain = 1/2 (0mA ~ 119.75mA).0x05hLD Gain and Offset Ctrl2:002:00RWUD Pin Offset Selection. 0: The ILp offset current is 32mA. 10: The ILp offset current is 32mA. 10: The ILp offset current is 48mA. 10: The ILp offset current is 80mA. 11: The ILp offset current is 96mA. 11: The ILp of			7:1	00	RW	Reserved.
No.33h LD_EN/ VEA_EN 2 1 RW Reserved. 0x03h LD_EN/ VEA_EN 1 1 RW Reserved. 0 1 RW Enable V _E , Voltage Source. 1: Enable, 0: Disable. 1 0x04h MPD Range Selection 7:1 00 R Reserved. 0x04h MPD Range Selection 0 0 Reserved. MPD monitoring current. 0: The monitoring range for MPD is 250µA ~ 2mA (mirror ratio = 1:1). 1: The monitoring range for MPD is 250µA ~ 2mA (mirror ratio = 1:2). 1 1 0 R Reserved. 3 0 RW LD Current Gain Selection. 0: gain = 1 (0mA ~ 239.5mA). 1: gain = 1/2 (0mA ~ 119.75mA). 0x05h LD Gain and Offset Ctrl 3 0 RW LD Current Gain Selection. 000: The ILD offset current is 0mA. 010: The ILD offset current is 0mA. 010: The ILD offset current is 32mA. 100: The ILD offset current is 64mA. 100: The ILD offset current is 64mA. 100: The ILD offset current is 80mA. 110: The ILD offset current is 96mA. 110: The ILD offset current is 96mA. 111: The ILD offset current is 96mA. 110: The	0x02h		0	0	RW	
Dx03h LD_EN/ VEA_EN 1 1 RW Enable V _{EA} Voltage Source. 1: Enable, 0: Disable. 0 1 RW Enable UC current Source. 1: Enable, 0: Disable. Reserved. 0x04h MPD Range Selection 7:1 00 R Reserved. 0x04h MPD Range Selection 0 0 R Reserved. 0x04h MPD Range Selection 0 0 R Reserved. 0x04h MPD Range Selection 0 0 R Reserved. 0x05h LD Gain and Offset Ctrl 7:4 00 R Reserved. 2:0 0 RW LD Current Gain Selection. 000: The I _{Lo} offset current is 0mA. 010: The I _{Lo} offset current is 0mA. 010: The I _{Lo} offset current is 48mA. 100: The I _{Lo} offset current is 48mA. 100: The I _{Lo} offset current is 48mA. 100: The I _{Lo} offset current is 80mA. 110: The I _{Lo} offset current is 80mA. 110: The I _{Lo} offset current is 90mA. 110: The I _{Lo} offset current is 90mA. 110: The I _{Lo} offset current is 90mA. 111: The I _{Lo} offset current is 90mA. 110: The I _{Lo} offset current is 90mA. 110: The I _{Lo} offset current is 90mA. 111: The I _{Lo} offset current is 90mA. 112: The I _{Lo} offset current is 90mA. 113: The I _{Lo} offset current is 90mA. 114: The I _{Lo} offset current is 90mA. 115: The I _{Lo} offset current is 90mA. 116: The I _{Lo} offset current is 90mA. 11			7:3	00	RW	Reserved.
0x03n VEĀ_EN 1 1 RW Enable VeAveAveAveAveAveAveAveAveAveAveAveAveAve		ID FN/	2	1	RW	
MPD Range Selection 7:1 00 R Reserved. 0x04h MPD Range Selection 0 0 R Reserved. 0x04h MPD Range Selection 0 0 RW MPD Range Selection. The selection of monitoring range for MPD. This bit is to select the ran 0 ⁻ The monitoring current. 0 ⁻ The monitoring current. 0 ⁻ The monitoring range for MPD is 250µA ~ 2mA (mirror ratio = 1:1). 1 ⁻ The monitoring range for MPD is 50µA ~ 250µA (mirror ratio = 1:2). 1 7:4 00 R Reserved. 3 0 RW LD Current Gain Selection. 0 ⁻ gain = 1 (0mA ~ 239.5mA). 1 ⁻ gain = 1/2 (0mA ~ 119.75mA). 1 D Pin Offset Selection. 000 ⁻ The I _{LD} offset current is 0mA. 01 ⁻ The I _{LD} offset current is 16mA. 01 ⁻ The I _{LD} offset current is 32mA. 10 ⁻ The I _{LD} offset current is 48mA. 10 ⁻ The I _{LD} offset current is 80mA. 11 ⁻ The I _{LD} offset current is 80mA. 11 ⁻ The I _{LD} offset current is 96mA. 11 ⁻ The I _{LD} offset current is 96mA. 11 ⁻ The I _{LD} offset current is 112mA. 0x06h Multiplex Monitoring Output Selection 7 ⁻ 2 00 RW Reserved. 0x06h Multiplex Monitoring Output Selection 7 ⁻ 2 00 RW Reserved. 0x02h ILD 7 ⁻ 0 0 RW Reserved. 7 ⁻ 0<	0x03h		1	1	RW	1: Enable, 0: Disable.
MPD Range Selection MPD noto MPD Range Selection. The selection of monitoring range for MPD. This bit is to select the ran of MPD monitoring current. 0: The monitoring range for MPD is 250µA ~ 2mA (mirror ratio = 1:1). 1: The monitoring range for MPD is 250µA ~ 250µA (mirror ratio = 1:1). V 7:4 00 R Reserved. 3 0 RW LD Current Gain Selection. 0: gain = 1 (0mA ~ 239.5mA). 1: gain = 1/2 (0mA ~ 119.75mA). LD Gain and Offset Ctrl 2:0 0 RW LD Current Gain Selection. 000: The I _{LD} offset current is 10mA. 010: The I _{LD} offset current is 32mA. 010: The I _{LD} offset current is 48mA. 100: The I _{LD} offset current is 64mA. 101: The I _{LD} offset current is 80mA. 110: The I _{LD} offset current is 96mA. 111: The I _{LD} offset current is 112mA. 0x06h Multiplex Monitoring Output Selection 7:2 00 RW Reserved. 0x06h Multiplex Monitoring Output Selection 7:2 00 RW Reserved. 0x06h Multiplex Monitoring Output 7:2 00 RW Reserved. 0x06h Multiplex Monitoring Output 7:0 3 RW Multiplex Monitoring Output Channel Selection ⁽¹⁾ . This register is used to select channels to MC pin.			0	1	RW	
0x04h Range Selection 0 0 RW For Party Selection The Selection of Michael Internation of Michael Internation of MPD monitoring range for MPD is 250µA ~ 2mA (mirror ratio = 1:1). 1: The monitoring range for MPD is 250µA ~ 2mA (mirror ratio = 1:8). 0x05h 7:4 00 R Reserved. 3 0 RW LD Current Gain Selection. 0: gain = 1 (0mA ~ 239.5mA). 1: gain = 1/2 (0mA ~ 119.75mA). LD Gain and Offset Ctrl 7:4 00 R Reserved. 2:0 0 RW LD Current Gain Selection. 0: gain = 1 (0mA ~ 239.5mA). 1: gain = 1/2 (0mA ~ 119.75mA). 0x05h and Offset Ctrl 2:0 0 RW 01: The ILD offset current is 0mA. 010: The ILD offset current is 0ms. 010: The ILD offset current is 32mA. 01: The ILD offset current is 48mA. 100: The ILD offset current is 64mA. 101: The ILD offset current is 96mA. 111: The ILD offset current is 96mA. 0x06h Multiplex Monitoring Output 7:2 00 RW Reserved. 0x06h 10:0 3 RW Multiplex Monitoring Output Channel Selection ⁽¹⁾ . This register is used to select channels to MC 0x06h 11:D 7:0 00 RW 8-bit Laser Bias for Channel 0. ILD = k × (LopFSET + 128 × (C		Range	7:1	00	R	Reserved.
0x05h Autor Autor <td< td=""><td>0x04h</td><td>0</td><td>0</td><td>RW</td><td>0: The monitoring range for MPD is 250μA ~ 2mA (mirror ratio = 1:1).</td></td<>	0x04h		0	0	RW	0: The monitoring range for MPD is 250μ A ~ 2mA (mirror ratio = 1:1).
0x05h LD Gain and Offset Ctrl LD Pin Offset Selection. 0x05h and Offset Ctrl 2:0 0 RW 000: The ILD offset current is 0mA. 010: The ILD offset current is 32mA. 010: The ILD offset current is 32mA. 010: The ILD offset current is 48mA. 100: The ILD offset current is 64mA. 101: The ILD offset current is 64mA. 101: The ILD offset current is 96mA. 111: The ILD offset current is 112mA. Multiplex Monitoring Output 7:2 00 RW 110: The ILD offset current is 112mA. DAC registers (Reg 0x20h ~ 0x21h) 1:0 3 RW All data written to these registers are immediately copied to the DAC registers and the DAC output updates. 0x20h ILD 7:0 00			7:4	00	R	Reserved.
DescriptionLD Gain and Offset CtrlLD Gain and Offset Ctrl000: The ILD offset current is 0mA. 001: The ILD offset current is 32mA. 010: The ILD offset current is 32mA. 010: The ILD offset current is 48mA. 100: The ILD offset current is 64mA. 101: The ILD offset current is 96mA. 111: The ILD offset current is 96mA. 111: The ILD offset current is 112mA.0x06hMultiplex Monitoring Output Selection7:200RWReserved.0x06h1:03RWMultiplex Multiplex Multiplex Multiplex Monitoring Output Channel Selection (1). This register is used to select channels to MC pin.DAC registers (Reg 0x20h ~ 0x21h) All data written to these registers are immediately copied to the DAC registers and the DAC output updates.0x20hILD7:000RW8-bit Laser Bias for Channel 0. ILD = k × (I _{OFFSET} + 128 × (Code/256)).			3	0	RW	LD Current Gain Selection. 0: gain = 1 (0mA ~ 239.5mA). 1: gain = 1/2 (0mA ~ 119.75mA).
0x05h LD Gain and Offset Ctrl 2:0 0 RW 001: The I _{LD} offset current is 16mA. 010: The I _{LD} offset current is 32mA. 011: The I _{LD} offset current is 48mA. 100: The I _{LD} offset current is 64mA. 101: The I _{LD} offset current is 96mA. 110: The I _{LD} offset current is 96mA. 110: The I _{LD} offset current is 112mA. 0x06h Multiplex Monitoring Output Selection 7:2 00 RW Reserved. DAC registers (Reg 0x20h ~ 0x21h) 1:0 3 RW Multiplex Monitoring Output to the DAC registers and the DAC output updates. 0x20h ILD 7:0 00 RW 8-bit Laser Bias for Channel 0. I _{LD} = k × (I _{OFFSET} + 128 × (Code/256)).						LD Pin Offset Selection.
0x05h and Offset Ctrl 2:0 0 RW 010: The ILD offset current is 32mA. 010: The ILD offset current is 48mA. 100: The ILD offset current is 64mA. 100: The ILD offset current is 64mA. 101: The ILD offset current is 96mA. 111: The ILD offset current is 96mA. 0x06h Multiplex Monitoring Output Selection 7:2 00 RW Reserved. 0x06h 1:0 3 RW Multiplex Monitoring Output Selection ⁽¹⁾ . This register is used to select channels to MC 0x06h 1:0 3 RW Multiplex Monitoring Output Channel Selection ⁽¹⁾ . This register is used to select channels to MC 0x06h 1:0 3 RW Multiplex Monitoring Output Channel Selection ⁽¹⁾ . This register is used to select channels to MC 0x06h 1:0 3 RW Multiplex Monitoring Output Channel Selection ⁽¹⁾ . This register is used to select channels to MC 0x20h ILD 7:0 00 RW 8-bit Laser Bias for Channel 0. ILD = k × (I _{OFFSET} + 128 × (Code/256)).						000: The I_{LD} offset current is 0mA.
Ctrl 2:0 0 RW 010: The ILD offset current is 32mA. 010: The ILD offset current is 48mA. 100: The ILD offset current is 64mA. 100: The ILD offset current is 80mA. 10: The ILD offset current is 96mA. 110: The ILD offset current is 96mA. 111: The ILD offset current is 112mA. 0x06h Multiplex Monitoring Output Selection 7:2 00 RW Reserved. 0x06h 1:0 3 RW Multiplex Monitoring Output Channel Selection (1). This register is used to select channels to MO DAC registers (Reg 0x20h ~ 0x21h) RW Multiplex copied to the DAC registers and the DAC output updates. 0x20h ILD 7:0 00 RW 8-bit Laser Bias for Channel 0. ILD = k × (I _{OFFSET} + 128 × (Code/256)).	0,056					001: The I _{LD} offset current is 16mA.
Image: Constraint of the second system of	0x0511	-				010: The I_{LD} offset current is 32mA.
Image: Second system Image: Second system Image: Second system 101: The I_{LD} offset current is 80mA. Image: Second system Multiplex 100: The I_{LD} offset current is 96mA. Image: Ox06h Multiplex 7:2 00 RW Reserved. Image: Output Selection 1:0 3 RW Multiplex Monitoring Output Channel Selection (1). This register is used to select channels to MO pin. DAC registers (Reg 0x20h ~ 0x21h) RW Multiplex Monitoring Output to the DAC registers and the DAC output updates. Ox20h ILD 7:0 00 RW 8-bit Laser Bias for Channel 0. I_LD = k × (I_{OFFSET} + 128 × (Code/256)).			2:0	0	RW	_
Image: Constraint of the second se						
Image: Constraint of the second se						_
Multiplex Monitoring Output Selection 7:2 00 RW Reserved. 0x06h A 1:0 3 RW Multiplex Monitoring Output Channel Selection ⁽¹⁾ . This register is used to select channels to MC pin. DAC registers (Reg 0x20h ~ 0x21h) All data written to these registers are immediately copied to the DAC registers and the DAC output updates. 0x20h ILD 7:0 00 RW 8-bit Laser Bias for Channel 0. I _{LD} = k × (I _{OFFSET} + 128 × (Code/256)).						
0x06h Monitoring Output Selection 1:0 3 RW Multiplex Monitoring Output Channel Selection ⁽¹⁾ . This register is used to select channels to MC pin. DAC registers (Reg 0x20h ~ 0x21h) All data written to these registers are immediately copied to the DAC registers and the DAC output updates. 0x20h ILD 7:0 00 RW 8-bit Laser Bias for Channel 0. I _{LD} = k × (I _{OFFSET} + 128 × (Code/256)).		Multiplay				
Output Selection 1:0 3 RW Multiplex Monitoring Output Channel Delection This register is used to select channels to MC DAC registers (Reg 0x20h ~ 0x21h) All data written to these registers are immediately copied to the DAC registers and the DAC output updates. 0x20h ILD 7:0 00 RW 8-bit Laser Bias for Channel 0. ILD = k × (I _{OFFSET} + 128 × (Code/256)).	02066		7:2	00	RW	
All data written to these registers are immediately copied to the DAC registers and the DAC output updates. 0x20h ILD 7:0 00 RW 8-bit Laser Bias for Channel 0. I _{LD} = k × (I _{OFFSET} + 128 × (Code/256)).		Selection	-		RW	
0x20hILD7:000RW8-bit Laser Bias for Channel 0. $I_{LD} = k \times (I_{OFFSET} + 128 \times (Code/256)).$					nmed	ately conied to the DAC registers and the DAC output undates
I UX21h I VEA I 7:0 I 00 I RW I 8-bit EAM Bias for Channel 0. V⊨₄ = -3.2 × (Code/256).	0x21h	VEA	7:0	00	RW	8-bit EAM Bias for Channel 0. V_{EA} = -3.2 × (Code/256).

NOTE:

1. Multiplex Monitoring Output Selection

Multiplex Selection (2-Bit Hex)	Input
0	VEA Monitor Current.
1	MPD Monitor Current.
2	LD Monitor Voltage (1/2).

APPLICATION INFORMATION

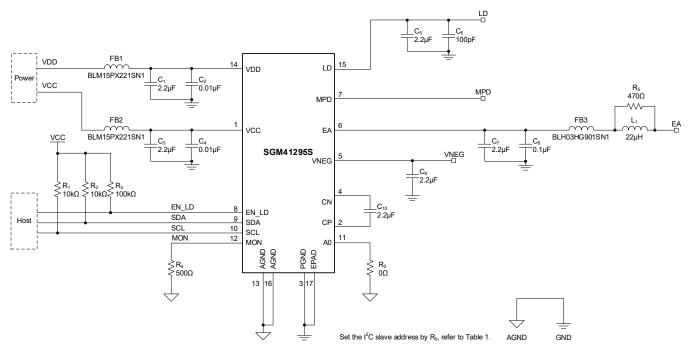


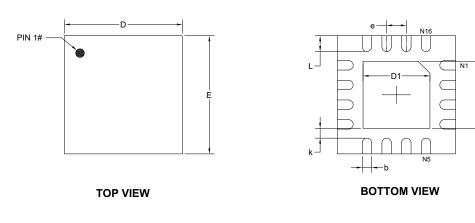
Figure 13. SGM41295S Demo Board Circuits

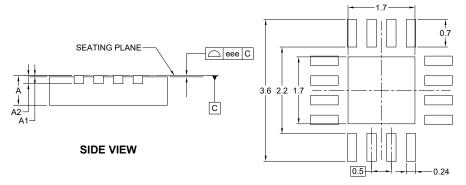
PCB Layout Guideline

A good PCB layout is critical for stable operation of the SGM41295S. Follow these guidelines for the best results:

- The SGM41295S charge pump has high di/dt switching loop, which is formed by the VCC (pin 1), CP (pin 2), CN (pin 4), VNEG (pin 5) and PGND (pin 3). It is critical to put the C_{VCC} (C_3 , C_4), C_{FLY} (C_{10}) and C_{VNEG} (C_9) capacitors as close to their respective device pins and PGND pin as possible, which minimizes the parasitic inductance and the VCC pin voltage spike.
- It is recommended to connect the PGND (pin 3) and the bottoms of C_{VCC} (C_3 , C_4) and C_{VNEG} (C_9) as close as possible, away from others to avoid the PGND high di/dt current flows through the SGM41295S exposed pad (EP) and AGND (pin 13 and pin 16).
- The VDD (pin 14) is not a high di/dt switching pin. It is recommended to put C_{VDD} (C₁, C₂) as close to VDD (pin 14) and AGND (pin16, pin13 and EP) as possible for better noise decoupling.
- The LD (pin 15) is not a high di/dt switching pin. It is recommended to put C_{LD} (C₅, C₆) as close to LD pin and AGND (pin 16, pin 13 and EP) as possible for better noise decoupling.

REVISION HISTORY

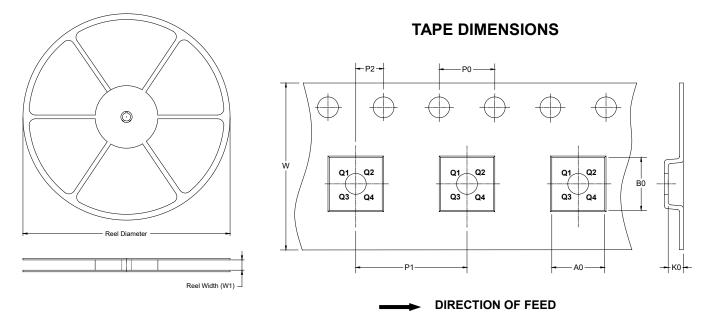

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


OCTOBER 2024 – REV.A.1 to REV.A.2	Page
Added notes for ESD	
Updated Register Map and Figure 13	
JULY 2024 – REV.A to REV.A.1	Page
Added Package Thermal Resistance section	
Changes from Original (MARCH 2024) to REV.A	Page
Changed from product preview to production data	All

É1

PACKAGE OUTLINE DIMENSIONS TQFN-3×3-16L

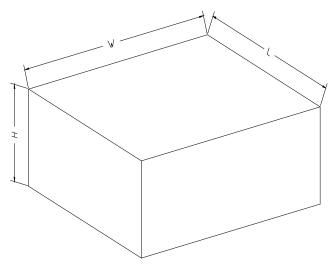
RECOMMENDED LAND PATTERN (Unit: mm)


Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
А	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A2	0.203	B REF	0.008 REF		
D	2.900	3.100	0.114	0.122	
D1	1.600	1.800	0.063	0.071	
E	2.900	3.100	0.114	0.122	
E1	1.600	1.800	0.063	0.071	
k	0.200) MIN	0.008 MIN		
b	0.180	0.300	0.007	0.012	
е	0.500 TYP		0.020 TYP		
L	0.300	0.500	0.012	0.020	
eee	0.080		0.003		

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS


NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TQFN-3×3-16L	13″	12.4	3.35	3.35	1.13	4.0	8.0	2.0	12.0	Q2

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)			Pizza/Carton	
13″	386	280	370	5	DD0002

