74LVC1G08Q Automotive Single 2-Input Positive AND Gate

GENERAL DESCRIPTION

The 74LVC1G08Q provides a single 2-input positive AND gate that is designed for 1.65V to 5.5V V_{CC} operation. The device features the Boolean function $Y = A \cdot B$ or $Y = \overline{A} + \overline{B}$.

The 74LVC1G08Q is capable of holding high output drive while low static power dissipation can be maintained over the wide supply voltage operating range.

The device is AEC-Q100 qualified (Automotive Electronics Council (AEC) standard Q100 Grade 1) and it is suitable for automotive applications.

The 74LVC1G08Q is available in Green SC70-5 and SOT-23-5 packages and supports -40°C to +125°C temperature range.

APPLICATIONS

Automotive Applications

Computing: Server, PC and Notebook

Medical Equipment

Industrial Equipment

Telecom Equipment

Wireless Equipment

Battery Powered Equipment

FUNCTION TABLE

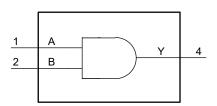
INPUTS		OUTPUT
Α	В	Y
Н	Н	Н
L	X	L
X	L	L

 $Y = A \cdot B$ or $Y = \overline{A} + \overline{B}$

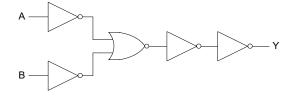
H = High Voltage Level

L = Low Voltage Level

X = Don't Care


FEATURES

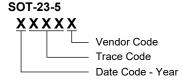
AEC-Q100 Qualified for Automotive Applications
 Device Temperature Grade 1


 $T_A = -40^{\circ}C$ to +125°C

- Wide Supply Voltage Range: 1.65V to 5.5V
- Inputs Accept Voltages Higher than the Supply Voltage and up to 5.5V
- +24mA/-24mA Output Current at V_{CC} = 3.0V
- Low Power Consumption: I_{CC} = 10μA (MAX)
- Propagation Delay: 4.0ns (TYP) at V_{CC} = 3.3V
- Support Down Translation to V_{CC}
- Support Partial Power-Down Mode, Live Insertion and Back-Drive Protection
- -40°C to +125°C Operating Temperature Range
- Available in Green SC70-5 and SOT-23-5 Packages

LOGIC SYMBOL

LOGIC DIAGRAM


PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION	
741.1/04.0000	SC70-5	-40°C to +125°C	74LVC1G08QC5G/TR	1L6XX	Tape and Reel, 3000	
74LVC1G08Q	SOT-23-5	-40°C to +125°C	74LVC1G08QN5G/TR	1LB XXXXX	Tape and Reel, 3000	

MARKING INFORMATION

NOTE: XX = Date Code. XXXXX = Date Code, Trace Code and Vendor Code.

SC70-5
YYY X X
Date Code - Week
Date Code - Year
Serial Number

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V _{CC} 0.5V to 6.5V
Input Voltage, V _I ⁽¹⁾
Output Voltage, V _O ⁽¹⁾
High-State or Low-State0.5V to MIN(6.5V, V _{CC} + 0.5V)
High-Impedance or Power-Off Mode0.5V to 6.5V
Input Clamp Current, I _{IK} (V _I < 0V)50mA
Output Clamp Current, I _{OK} (V _O < 0V)50mA
Continuous Output Current, I_0 (V_0 = 0V to V_{CC})±50mA
Continuous Current through V _{CC} or GND±100mA
Junction Temperature ⁽²⁾ +150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility (3) (4)
HBM±7000V
CDM±1000V

NOTES:

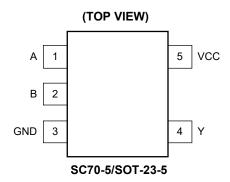
- 1. The input and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.
- 2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.
- 3. For human body model (HBM), all pins comply with AEC-Q100-002 specification.
- 4. For charged device model (CDM), all pins comply with AEC-Q100-011 specification.

RECOMMENDED OPERATING CONDITIONS

Supply Voltage, V _{CC}	1.65V to 5.5V
Input Voltage, V _I	0V to 5.5V
Output Voltage, Vo	0V to V _{CC}
Operating Temperature Range	-40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN	NAME	FUNCTION
1, 2	A, B	Data Inputs.
3	GND	Ground Pin.
4	Y	Data Output.
5	VCC	Power Supply Pin.

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at T_A = +25°C and V_{CC} = 3.3V, unless otherwise noted.)

PARAMETER	SYMBOL		CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
		V _{CC} = 1.65V to	1.95V	Full	0.65 × V _{CC}			
LEala Lavallana AValta aa		V _{CC} = 2.3V to 2.7V		Full	1.7			V
High-Level Input Voltage	V _{IH}	$V_{CC} = 2.7V \text{ to } 3$	V _{CC} = 2.7V to 3.6V		2.0			
		V _{CC} = 4.5V to 5	5.5V	Full	0.7 × V _{CC}			
		$V_{CC} = 1.65V \text{ to}$	1.95V	Full			0.35 × V _{CC}	
Land and board Malkana	.,	V _{CC} = 2.3V to 2	2.7V	Full			0.7	.,
Low-Level Input Voltage	V _{IL}	V _{CC} = 2.7V to 3	3.6V	Full			0.8	V
		V _{CC} = 4.5V to 5	5.5V	Full			0.3 × V _{CC}	
			V_{CC} = 1.65V to 5.5V, I_{OH} = -100 μ A	Full	V _{CC} - 0.1	V _{CC} - 0.01		
			V _{CC} = 1.65V, I _{OH} = -4mA	Full	1.2	1.55		
	V _{он}	$V_I = V_{IH}$ or V_{IL}	V _{CC} = 2.3V, I _{OH} = -8mA	Full	1.9	2.19		V
High-Level Output Voltage			V _{CC} = 2.7V, I _{OH} = -12mA	Full	2.3	2.55		
			V _{CC} = 3.0V, I _{OH} = -16mA	Full	2.4	2.80		
			V _{CC} = 3.0V, I _{OH} = -24mA	Full	2.3	2.70		
			V _{CC} = 4.5V, I _{OH} = -32mA	Full	3.8	4.20		
			V_{CC} = 1.65V to 5.5V, I_{OL} = 100 μ A	Full		0.01	0.1	
			V _{CC} = 1.65V, I _{OL} = 4mA	Full		0.10	0.45	
			V _{CC} = 2.3V, I _{OL} = 8mA	Full		0.15	0.3	
Low-Level Output Voltage	V_{OL}	$V_I = V_{IH}$ or V_{IL}	V _{CC} = 2.7V, I _{OL} = 12mA	Full		0.20	0.5	V
			V _{CC} = 3.0V, I _{OL} = 16mA	Full		0.20	0.4	1
			V _{CC} = 3.0V, I _{OL} = 24mA	Full		0.30	0.55	
			V _{CC} = 4.5V, I _{OL} = 32mA	Full		0.35	0.55	
Input Leakage Current	I ₁	A or B input, V_{CC} = 0V to 5.5V, V_i = 5.5V or GND		Full		±0.1	±5	μA
Power-Off Leakage Current	I _{OFF}	V _{CC} = 0V, V _I or	· V _O = 5.5V	Full		±0.1	±10	μA
Supply Current	Icc		5.5V, V _I = 5.5V or GND, I _O = 0A	Full		0.1	10	μΑ
Additional Supply Current	ΔI _{CC}	Per pin, $V_{CC} = I_0 = 0A$	$3.0V \text{ to } 5.5V, V_1 = V_{CC} - 0.6V,$	Full		0.1	500	μΑ
Input Capacitance	Cı	V_{CC} = 3.3V, V_{I}	= V _{CC} or GND	+25°C		4		pF

DYNAMIC CHARACTERISTICS

(For test circuit see Figure 1. Full = -40° C to $+125^{\circ}$ C, all typical values are measured at $T_A = +25^{\circ}$ C, unless otherwise noted.)

PARAMETER	SYMBOL	co	TEMP	MIN (2)	TYP	MAX (2)	UNITS		
Propagation Delay (1)		A or B to Y, see Table 1	$V_{CC} = 1.8V \pm 0.15V$	Full	1.0	8.5	12.6		
			$V_{CC} = 2.5V \pm 0.2V$	Full	0.5	5.0	7.9	ns	
	t _{PD}		$V_{CC} = 3.3V \pm 0.3V$	Full	0.5	4.0	6.6		
			$V_{CC} = 5.0V \pm 0.5V$	Full	0.5	3.5	5.8		
Power Dissipation Capacitance (3)	C _{PD}	f = 10MHz	V _{CC} = 1.8V	+25°C		29			
			V _{CC} = 2.5V	+25°C		29		1	
			V _{CC} = 3.3V	+25°C		30		pF	
			V _{CC} = 5.0V	+25°C		31		1	

NOTES:

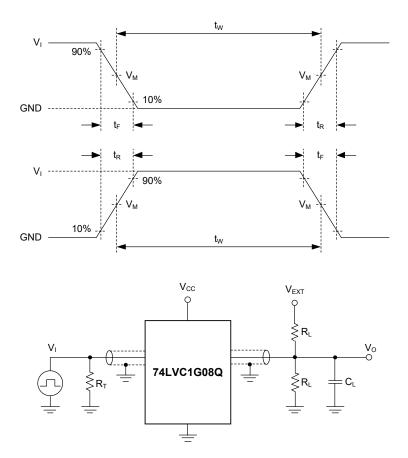
- 1. t_{PD} is the same as t_{PLH} and t_{PHL} .
- 2. Specified by design and characterization, not production tested.
- 3. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

$$P_D = C_{PD} \times {V_{CC}}^2 \times f_i \times N + \Sigma (C_L \times {V_{CC}}^2 \times f_o)$$

where:

 f_i = Input frequency in MHz.

f_o = Output frequency in MHz.


 C_L = Output load capacitance in pF.

 V_{CC} = Supply voltage in Volts.

N = Number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_o) = \text{Sum of outputs.}$

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

R_L: Load resistance.

C_L: Load capacitance (includes jig and probe).

R_T: Termination resistance (equals to output impedance Zo of the pulse generator).

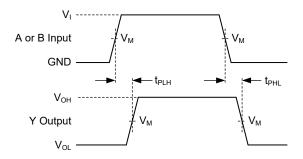

V_{EXT}: External voltage is used to measure switching times.

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

SUPPLY VOLTAGE	INPUT		LO	V _{EXT}	
Vcc	Vı	t _R , t _F	CL	R _L	t _{PLH} , t _{PHL}
1.8V ± 0.15V	V _{CC}	≤ 2.0ns	30pF	1kΩ	Open
2.5V ± 0.2V	V _{CC}	≤ 2.0ns	30pF	500Ω	Open
3.3V ± 0.3V	3.0V	≤ 2.5ns	50pF	500Ω	Open
5.0V ± 0.5V	V _{CC}	≤ 2.5ns	50pF	500Ω	Open

WAVEFORMS

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 2. Input (A or B) to Output (Y) Propagation Delays

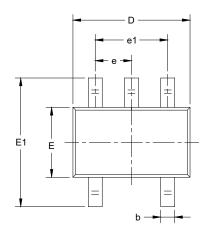
Table 2. Measurement Points

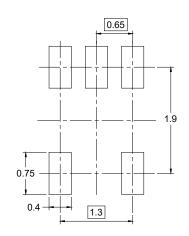
SUPPLY VOLTAGE	INF	OUTPUT	
V _{cc}	Vı	V _M ⁽¹⁾	V _M
1.8V ± 0.15V	V _{CC}	0.5 × V _{CC}	0.5 × V _{CC}
2.5V ± 0.2V	V _{CC}	0.5 × V _{CC}	0.5 × V _{CC}
3.3V ± 0.3V	3.0V	1.5V	1.5V
5.0V ± 0.5V	Vcc	0.5 × V _{CC}	0.5 × V _{CC}

NOTE:

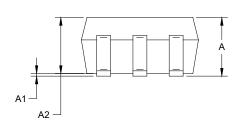
1. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 2.5ns.

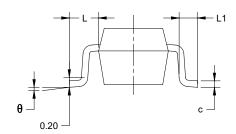
REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

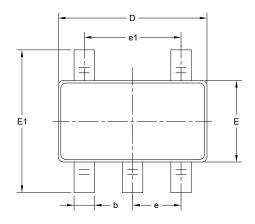

Changes from Original (JANUARY 2025) to REV.A

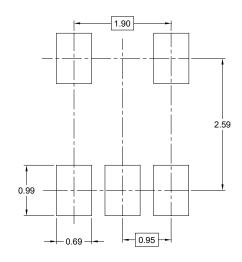
Page



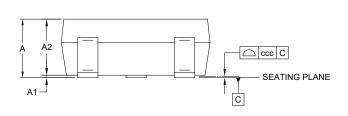

PACKAGE OUTLINE DIMENSIONS SC70-5

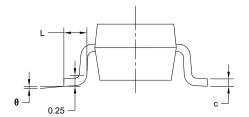
RECOMMENDED LAND PATTERN (Unit: mm)



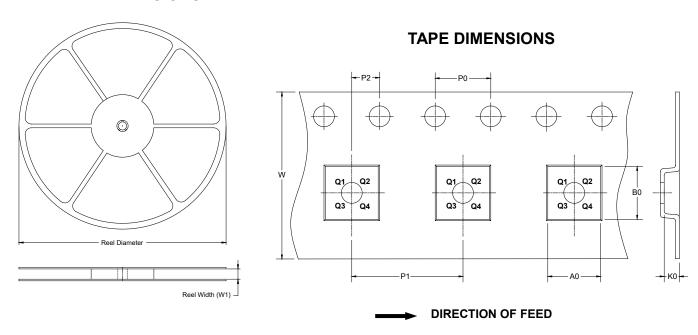

Symbol		nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
Α	0.800	1.100	0.031	0.043		
A1	0.000	0.100	0.000	0.004		
A2	0.800	1.000	0.031	0.039		
b	0.150	0.350	0.006	0.014		
С	0.080	0.220 0.003		0.009		
D	2.000	2.200	0.079	0.087		
E	1.150	1.350	0.045	0.053		
E1	2.150	2.450	0.085	0.096		
е	0.65	TYP	0.026 TYP			
e1	1.300	BSC	0.051 BSC			
L	0.525	REF	0.021 REF			
L1	0.260	0.460	0.010	0.018		
θ	0°	8°	0°	8°		

NOTES:


- Body dimensions do not include mode flash or protrusion.
 This drawing is subject to change without notice.


PACKAGE OUTLINE DIMENSIONS SOT-23-5

RECOMMENDED LAND PATTERN (Unit: mm)

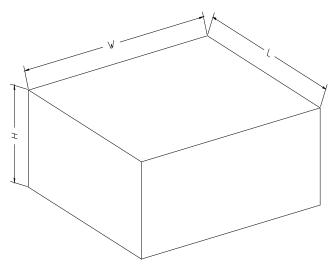

Currely of	Dimensions In Millimeters							
Symbol	MIN	NOM	MAX					
Α	-	-	1.450					
A1	0.000	-	0.150					
A2	0.900	-	1.300					
b	0.300	0.300 - 0.5						
С	0.080	-	0.220					
D	2.750	-	3.050					
E	1.450	-	1.750					
E1	2.600	-	3.000					
е		0.950 BSC						
e1		1.900 BSC						
L	0.300	-	0.600					
θ	0°	-	8°					
ccc		0.100						

NOTES

- 1. This drawing is subject to change without notice.
- 2. The dimensions do not include mold flashes, protrusions or gate burrs.
- 3. Reference JEDEC MO-178.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant	
SC70-5	7"	9.5	2.40	2.50	1.20	4.0	4.0	2.0	8.0	Q3	
SOT-23-5	7"	9.5	3.20	3.20	1.40	4.0	4.0	2.0	8.0	Q3	DD0001

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	9
7" (Option)	368	227	224	8	
7"	442	410	224	18	DD0002