SGM12024A
0.4 GHz to 5.0 GHz , DP4T Switch with MIPI RFFE Interface

GENERAL DESCRIPTION

The SGM12024A is a dual-pole/four-throw (DP4T) addressable switch, which supports a wide operating frequency from 0.4 GHz to 5.0 GHz . The device provides low insertion loss and high isolation performance. These specifications make the device appropriate for $2 \mathrm{G} / 3 \mathrm{G} / 4 \mathrm{G} / 5 \mathrm{G}$ applications, which need high power processing and high linearity.

The device has the ability to integrate serial control system compatible with RFFE standard. Internal driver and decoder for switch control signals are offered by the controller, which makes it flexible in RF path routing and bands selection.

No external DC blocking capacitors required on the RF paths as long as no external DC voltage is applied, which can save PCB area and cost.

The SGM12024A is available in a Green UTQFN-2× 2-16AL package.

APPLICATIONS

Antenna Swapping
5G SRS Applications

FEATURES

- Operating Frequency Range: 0.4 GHz to 5.0 GHz
- Low Insertion Loss
- Input 0.1 dB Compression Point: 38dBm
- High Isolation
- MIPI RFFE V2.1 Interface Compatible
- No External DC Blocking Capacitors Required
- Available in a Green UTQFN-2×2-16AL Package

BLOCK DIAGRAM

Figure 1. SGM12024A Block Diagram

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM12024A	UTQFN- $2 \times 2-16 A L$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SGM12024AYURT16G/TR	017 XXXX	Tape and Reel, 3000

MARKING INFORMATION

NOTE: XXXX = Date Code, Trace Code and Vendor Code.

Green (RoHS \& HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.
ABSOLUTE MAXIMUM RATINGS
Supply Voltage, Vio 2.5 V
SDA, SCL and USID Control Voltage 2.5 V
RF Input Power, Pin 38 dBm ($\mathrm{f}_{0}=0.4 \mathrm{GHz}$ to 5.0 GHz)
Junction Temperature $+150^{\circ} \mathrm{C}$
Storage Temperature Range

\qquad
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10s) $+260^{\circ} \mathrm{C}$
ESD Susceptibility
HBM. 1500 V
CDM. 2000 V
RECOMMENDED OPERATING CONDITIONS
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Frequency Range 0.4 GHz to 5.0 GHz

\qquad
Supply Voltage, Vio.

\qquad
1.65 V to 1.95 V
SDA, SCL RFFE Bus High Voltage $\left(0.8 \times V_{10}\right)$ to V_{10}
SDA, SCL RFFE Bus Low Voltage. 0 V to $\left(0.2 \times \mathrm{V}_{10}\right)$RFFE USID Voltage, Vusid0 V to V_{10}

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

UTQFN-2×2-16AL

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	RFIN1	RFIN Port 1.
$2,4,10,12,15$	GND	Ground.
3	RFOUT1	RFOUT Port 1.
5	USID	RFFE USID Select Pin.
6	VIO	Supply Voltage.
7	SCL	RFFE Clock Signal.
8	NC	RFFE Data Signal.
9	RFOUT2	RFO Connection.
11	RFIN4	RFIN Port 4.
13	RFIN3	RFIN Port 3.
14	RFIN2	RFIN Port 2.
16	GND	Ground.
Exposed Pad		

0.4 GHz to 5.0 GHz , DP4T Switch with MIPI RFFE Interface

FUNCTION CHARACTERISTICS

Table 1. Register Mapping for RF Operating Modes

Register0	Output Switching Control Register							
Patch	D7	D6	D5	D4	D3	D2	D1	D0
DPDT Direct DP4T Direct (Default)	x	x	x	x	x	x	x	0
DP4T Cross	x	x	x	x	x	x	x	1

REGISTER TRUTH TABLE

Table 2. Register Truth Table (Register0[0] = 0)

State	Mode		Register1 (DP4T Switching Control Register)							
			D7	D6	D5	D4	D3	D2	D1	D0
1	Isolation mode	Isolation mode	x	X	0	0	0	0	0	0
2	RFIN1 to RFOUT1; RFOUT2 Isolation	Single through mode	X	X	0	0	0	0	0	1
3	RFIN1 to RFOUT1; RFIN2 to RFOUT2	Dual through mode	x	X	0	1	0	0	1	1
4	RFIN1 to RFOUT1; RFIN3 to RFOUT2	Dual through mode	X	x	0	1	0	1	0	1
5	RFIN1 to RFOUT1; RFIN4 to RFOUT2	Dual through mode	x	x	0	1	1	0	0	1
6	RFIN2 to RFOUT1; RFOUT2 Isolation	Single through mode	x	x	0	0	0	0	1	0
7	RFIN2 to RFOUT1; RFIN1 to RFOUT2	Dual through mode	x	x	1	0	0	0	1	1
8	RFIN2 to RFOUT1; RFIN3 to RFOUT2	Dual through mode	x	x	0	1	0	1	1	0
9	RFIN2 to RFOUT1; RFIN4 to RFOUT2	Dual through mode	x	x	0	1	1	0	1	0
10	RFIN3 to RFOUT1; RFOUT2 Isolation	Single through mode	x	x	0	0	0	1	0	0
11	RFIN3 to RFOUT1; RFIN1 to RFOUT2	Dual through mode	X	X	1	0	0	1	0	1
12	RFIN3 to RFOUT1; RFIN2 to RFOUT2	Dual through mode	x	x	1	0	0	1	1	0
13	RFIN3 to RFOUT1; RFIN4 to RFOUT2	Dual through mode	x	x	0	1	1	1	0	0
14	RFIN4 to RFOUT1; RFOUT2 Isolation	Single through mode	x	x	0	0	1	0	0	0
15	RFIN4 to RFOUT1; RFIN1 to RFOUT2	Dual through mode	x	X	1	0	1	0	0	1
16	RFIN4 to RFOUT1; RFIN2 to RFOUT2	Dual through mode	x	x	1	0	1	0	1	0
17	RFIN4 to RFOUT1; RFIN3 to RFOUT2	Dual through mode	x	x	1	0	1	1	0	0
18	RFIN1 to RFOUT2; RFOUT1 Isolation	Single through mode	x	x	1	1	0	0	0	1
19	RFIN2 to RFOUT2; RFOUT1 Isolation	Single through mode	x	x	1	1	0	0	1	0
20	RFIN3 to RFOUT2; RFOUT1 Isolation	Single through mode	x	x	1	1	0	1	0	0
21	RFIN4 to RFOUT2; RFOUT1 Isolation	Single through mode	x	x	1	1	1	0	0	0

REGISTER TRUTH TABLE (continued)

Table 3. Register Truth Table (Register0[0] = 1)

State	Mode		Register1 (DP4T Switching Control Register)							
			D7	D6	D5	D4	D3	D2	D1	D0
1	Isolation mode	Isolation mode	x	X	0	0	0	0	0	0
2	RFIN1 to RFOUT2; RFOUT1 Isolation	Single through mode	x	x	0	0	0	0	0	1
3	RFIN1 to RFOUT2; RFIN2 to RFOUT1	Dual through mode	x	x	0	1	0	0	1	1
4	RFIN1 to RFOUT2; RFIN3 to RFOUT1	Dual through mode	x	x	0	1	0	1	0	1
5	RFIN1 to RFOUT2; RFIN4 to RFOUT1	Dual through mode	x	X	0	1	1	0	0	1
6	RFIN2 to RFOUT2; RFOUT1 Isolation	Single through mode	x	x	0	0	0	0	1	0
7	RFIN2 to RFOUT2; RFIN1 to RFOUT1	Dual through mode	x	x	1	0	0	0	1	1
8	RFIN2 to RFOUT2; RFIN3 to RFOUT1	Dual through mode	x	x	0	1	0	1	1	0
9	RFIN2 to RFOUT2; RFIN4 to RFOUT1	Dual through mode	x	x	0	1	1	0	1	0
10	RFIN3 to RFOUT2; RFOUT1 Isolation	Single through mode	X	x	0	0	0	1	0	0
11	RFIN3 to RFOUT2; RFIN1 to RFOUT1	Dual through mode	x	x	1	0	0	1	0	1
12	RFIN3 to RFOUT2; RFIN2 to RFOUT1	Dual through mode	x	x	1	0	0	1	1	0
13	RFIN3 to RFOUT2; RFIN4 to RFOUT1	Dual through mode	x	x	0	1	1	1	0	0
14	RFIN4 to RFOUT2; RFOUT1 Isolation	Single through mode	X	X	0	0	1	0	0	0
15	RFIN4 to RFOUT2; RFIN1 to RFOUT1	Dual through mode	x	X	1	0	1	0	0	1
16	RFIN4 to RFOUT2; RFIN2 to RFOUT1	Dual through mode	x	x	1	0	1	0	1	0
17	RFIN4 to RFOUT2; RFIN3 to RFOUT1	Dual through mode	x	x	1	0	1	1	0	0
18	RFIN1 to RFOUT1; RFOUT2 Isolation	Single through mode	x	x	1	1	0	0	0	1
19	RFIN2 to RFOUT1; RFOUT2 Isolation	Single through mode	x	x	1	1	0	0	1	0
20	RFIN3 to RFOUT1; RFOUT2 Isolation	Single through mode	x	X	1	1	0	1	0	0
21	RFIN4 to RFOUT1; RFOUT2 Isolation	Single through mode	x	x	1	1	1	0	0	0

NOTE: $x=$ Either 0 or 1.

0.4GHz to 5.0 GHz , DP4T Switch with MIPI RFFE Interface

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IO}}=1.65 \mathrm{~V}\right.$ to 1.95 V , typical values are at $\mathrm{V}_{\mathrm{IO}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathbb{H}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm}, \mathrm{VSWR}=1: 1$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC Characteristics						
Supply Voltage	V_{10}		1.65	1.8	1.95	V
Supply Current	$\mathrm{I}_{\mathrm{VIO}}$			150	203	$\mu \mathrm{A}$
Turn-On Time	ton	50\% V $\mathrm{VD}_{\text {do }}$ to $90 \% \mathrm{RF}$			10	$\mu \mathrm{s}$
RF Path Switching Time (One on Path to Another)	$t_{\text {sw }}$	Switching CMD 50\% SCL to 90\%/10\% RF		2	3	$\mu \mathrm{s}$
Wake Up Time	$t_{w k}$	Switching CMD 50\% SCL to 90\%/10\% RF			10	$\mu \mathrm{s}$
VIO Reset Time	$\mathrm{t}_{\text {RST }}$	V_{10} off to it starts to re-power up	10			$\mu \mathrm{s}$
RF Characteristics						
Insertion Loss (RFINx to RFOUTx)	IL	$\mathrm{f}_{0}=0.4 \mathrm{GHz}$ to 1.0 GHz		0.50	0.85	dB
		$\mathrm{f}_{0}=1.0 \mathrm{GHz}$ to 2.0 GHz		0.56	0.95	
		$\mathrm{f}_{0}=2.0 \mathrm{GHz}$ to 2.7 GHz		0.64	1.20	
		$\mathrm{f}_{0}=3.0 \mathrm{GHz}$ to 3.8 GHz		0.84	1.45	
		$\mathrm{f}_{0}=4.0 \mathrm{GHz}$ to 5.0 GHz		0.94	1.65	
Isolation (Dual through Mode, No-Adjacent Ports)	ISO	$\mathrm{f}_{0}=0.4 \mathrm{GHz}$ to 1.0 GHz	31	49		dB
		$\mathrm{f}_{0}=1.0 \mathrm{GHz}$ to 2.0 GHz	25	44		
		$\mathrm{f}_{0}=2.0 \mathrm{GHz}$ to 2.7 GHz	22	41		
		$\mathrm{f}_{0}=3.0 \mathrm{GHz}$ to 3.8 GHz	20	37		
		$\mathrm{f}_{0}=4.0 \mathrm{GHz}$ to 5.0 GHz	16	31		
Isolation (Dual through Mode, Adjacent Ports)	ISO	$\mathrm{f}_{0}=0.4 \mathrm{GHz}$ to 1.0 GHz	31	37		dB
		$\mathrm{f}_{0}=1.0 \mathrm{GHz}$ to 2.0 GHz	25	33		
		$\mathrm{f}_{0}=2.0 \mathrm{GHz}$ to 2.7 GHz	22	31		
		$\mathrm{f}_{0}=3.0 \mathrm{GHz}$ to 3.8 GHz	20	26		
		$\mathrm{f}_{0}=4.0 \mathrm{GHz}$ to 5.0 GHz	16	24		
Input Return Loss (RFINx to RFOUTx)	RL	$\mathrm{f}_{0}=0.4 \mathrm{GHz}$ to 1.0 GHz		26		dB
		$\mathrm{f}_{0}=1.0 \mathrm{GHz}$ to 2.0 GHz		22		
		$\mathrm{f}_{0}=2.0 \mathrm{GHz}$ to 2.7 GHz		21		
		$\mathrm{f}_{0}=3.0 \mathrm{GHz}$ to 3.8 GHz		18		
		$\mathrm{f}_{0}=4.0 \mathrm{GHz}$ to 5.0 GHz		10		
Input 0.1dB Compression Point (RFINx to RFOUTx)	$\mathrm{P}_{0.1 \mathrm{~dB}}$	$\mathrm{f}_{0}=0.4 \mathrm{GHz}$ to 2.7 GHz , CW		38		dBm
		$\mathrm{f}_{0}=3.0 \mathrm{GHz}$ to 5.0 GHz , CW		36		
$2{ }^{\text {nd }}$ Harmonic	$2 f_{0}$	$\mathrm{f}_{0}=900 \mathrm{MHz}$ at 35 dBm		-51		dBm
$3{ }^{\text {rd }}$ Harmonic	$3 f_{0}$			-41		dBm
$2{ }^{\text {nd }}$ Harmonic	$2 f_{0}$	$\mathrm{f}_{0}=900 \mathrm{MHz}$ at 33 dBm		-63		dBm
$3{ }^{\text {rd }}$ Harmonic	$3 f_{0}$			-59		dBm
$2^{\text {nd }}$ Harmonic	$2 \mathrm{f}_{0}$	$\mathrm{f}_{0}=1800 \mathrm{MHz}$ at 25 dBm		-72		dBm
$3{ }^{\text {rd }}$ Harmonic	$3 f_{0}$			-65		dBm
$2{ }^{\text {nd }}$ Harmonic	$2 f_{0}$	$\mathrm{f}_{0}=1800 \mathrm{MHz}$ at 33 dBm		-54		dBm
$3{ }^{\text {rd }}$ Harmonic	$3 f_{0}$			-63		dBm
IIP2	IIP2	$\mathrm{f}_{0}=1950 \mathrm{MHz}$ at $20 \mathrm{dBm}, \mathrm{f}_{1}=4090 \mathrm{MHz}$ at -15 dBm		110		dBm
IIP3	IIP3	$\mathrm{f}_{0}=1950 \mathrm{MHz}$ at $20 \mathrm{dBm}, \mathrm{f}_{1}=1760 \mathrm{MHz}$ at -15 dBm		70		dBm

MIPI RFFE READ AND WRITE TIMING

Figure 2. Register Write Command Timing Diagram

__ Signal Driven by Master
.......... Signal Not Driven; Pull-Down Only
_- Signal Driven by Slave
....... For Reference Only

SCL
SDA

Figure 3. Register Read Command Timing Diagram

COMMAND SEQUENCE BIT DEFINITIONS

Type	SSC	Command Frame Bits					Parity Bits	Bus Park Cycle	Extended Operation					
		C[11:8]	C[7]	C[6:5]	C[4]	C[3:0]			Data Frame Bits	Parity Bits	Bus Park Cycle	Data Frame Bits	Parity Bits	Bus Park Cycle
Reg Write	Y	SA[3:0]	0	10	A[4]	A[3:0]	Y	-	D[7:0]	Y	Y	-	-	-
Reg Read	Y	SA[3:0]	0	11	A[4]	A[3:0]	Y	Y	D[7:0]	Y	Y	-	-	-
Reg0 Write	Y	SA[3:0]	1	D[6:5]	D[4]	D[3:0]	Y	Y	-	-	-	-	-	-

Legends:
SSC = Sequence Start Command
SA = Slave Address
A = Register Address
D = Data Bit

REGISTER MAPS

Register_0

Register Address: 0x00; R/W
Table 4. Register_0 Register Details

Bits	Bit Name	Description	Default	Type	B/G
Trig					
$D[7: 0]$	MODE_CTRL0	See Table 2 and Table 3 section.	00000000	R/W	No

Register_1
Register Address: 0x01; R/W
Table 5. Register_1 Register Details

Bits	Bit Name	Description	Default	Type	B/G
Trig					
$\mathrm{D}[7: 0]$	MODE_CTRL1	See Table 2 and Table 3 section.	00000000	R/W	No

RFFE_STATUS

Register Address: 0x1A; R/W
Table 6. RFFE_STATUS Register Details

Bits	Bit Name	Description	Default	Type	B/G	Trig
D[7]	SOFTWARE_RESET	0: Normal 1: Software reset During software reset, this register and all configurable registers are set to their default values except for reserved registers.	0	R/W	No	No
D[6]	$\begin{gathered} \hline \text { COMMAND_FRAME_ } \\ \text { PARITY_ERR } \end{gathered}$	Command frame parity error.	0	R/W	No	No
D[5]	COMMAND_LENGTH_ERR	Command length error.	0	R/W	No	No
D[4]	ADDRESS_FRAME PARITY ERR	Address frame parity error.	0	R/W	No	No
D[3]	DATA FRAME PARITY ERR	Data frame parity error.	0	R/W	No	No
$\mathrm{D}[2]$	RD_IVD_ADD	Read command to an invalid address.	0	R/W	No	No
$\mathrm{D}[1]$	WR_IVD_ADD	Write command to an invalid address.	0	R/W	No	No
D[0]	BID_GID_ERR	Read command with a BROADCAST_ID or GSID. When this register is read, it will reset.	0	R/W	No	No

GROUP_SID
Register Address: 0x1B; R and R/W
Table 7. GROUP_SID Register Details

Bits	Bit Name	Description	Default	Type	B/G	Trig
$D[7: 4]$	Reserved	Reserved.	0000	R	No	No
$D[3: 0]$	GSID	Group slave ID.	0000	R/W	No	No

REGISTER MAPS (continued)
PM_TRIG
Register Address: 0x1C; R/W and W
Table 8. PM_TRIG Register Details

Bits	Bit Name		Description	Default	Type	B/G	Trig
D[7]	PWR_MODE_1	0: Normal 1: Low power		0	R/W	Yes	No
D[6]	PWR_MODE_0	0: Active - Normal 1: Startup - All registers are reset to the default		0	R/W	Yes	No
D[5]	TRIGGER_MASK_2	0: TRIGGER_2 enabled 1: TRIGGER_2 disabled	If any one of the three TRIGGER_MASK_x is set to logic '1', the corresponding trigger is disabled, in that case data written to a register associated with the trigger goes directly to the destination register. Otherwise, if the TRIGGER_MASK_x is set to logic ' 0 ', incoming data is written to the shadow register, and the destination register is unchanged until its corresponding trigger is asserted.	0	R/W	No	No
D[4]	TRIGGER_MASK_1	0: TRIGGER_1 enabled 1: TRIGGER_1 disabled		0	R/W	No	No
$\mathrm{D}[3]$	TRIGGER_MASK_0	0: TRIGGER_0 enabled 1: TRIGGER_0 disabled		0	R/W	No	No
$\mathrm{D}[2]$	TRIGGER_2	0: Keep its associated destination registers unchanged 1: Load its associated destination registers with the data in the parallel shadow register, provided TRIGGER_MASK_2 is set to logic '0'		0	W	Yes	No
$\mathrm{D}[1]$	TRIGGER_1	0 : Keep its associated destination registers unchanged 1: Load its associated destination registers with the data in the parallel shadow register, provided TRIGGER_MASK_1 is set to logic ' 0 '		0	W	Yes	No
D[0]	TRIGGER_0	0 : Keep its associated destination registers unchanged 1: Load its associated destination registers with the data in the parallel shadow register, provided TRIGGER_MASK_0 is set to logic '0'		0	W	Yes	No

PRODUCT_ID

Register Address: 0x1D; R
Table 9. PRODUCT_ID Register Details

Bits	Bit Name	Description	Default	Type	B/G	Trig
$D[7: 0]$	PRODUCT_ID	Product number.	00000101	R	No	No

MANUFACTURER_ID

Register Address: 0x1E; R
Table 10. MANUFACTURER_ID Register Details

Bits	Bit Name	Description	Default	Type	B/G		
Trig							
D[7:0]	MANUFACTURER_ID[7:0]	Lower eight bits of Manufacturer ID. Read-only. Note that during USID programming, the write command sequence is executed on the register, but the value does not change.	01001010	R	No	No	N
:---							

MAN_USID

Register Address: 0x1F; R and R/W
Table 11. MAN_USID Register Details

Bits	Bit Name	Description	Default	Type	B/G	Trig
D[7:4]	MANUFACTURER_ID[11:8]	Upper four bits of Manufacturer ID. Read-only. Note that during USID programming, the write command sequence is executed on the register, but the value does not change.	0000	R	No	No
$\mathrm{D}[3: 0]$	USID	USID pin connected to GND.	1010	R/W	No	No
		USID pin connected to VIO.	1011			

POWER ON AND OFF SEQUENCE
Once the VIO voltage drops to 0 V , the VIO waits at least 10μ s before repowering (see Figure 4).

In order to ensure the correct data transmission, SDA/SCL must be sent after VIO has been applied at least 120 ns. There must be at least 15μ s to apply RF power after VIO has been applied. Wait a minimum of typically 10μ s after RFFE bus is idle to apply an RF signal (see Figure 5).

Figure 4. Digital Supply Detail

Figure 6. Switch Event Timing

Do not apply RF power during switching. To ensure this, the RF power needs to be removed before the register write operation that changes the switching mode is completed (see Figure 6).

When the low power mode is used, a delay time of $10 \mu \mathrm{~s}$ is required to exit the low power mode (see Figure 7).

Figure 5. Digital Signal/RF Power-On Detail

Figure 7. Low Power Mode Exit Timing

TYPICAL APPLICATION CIRCUIT

NOTE: * Matching for optimized RF performance, it may be changed according to different applications.
Figure 8. SGM12024A Typical Application Circuit

EVALUATION BOARD LAYOUT

Figure 9. SGM12024A Evaluation Board Layout

PACKAGE OUTLINE DIMENSIONS

UTQFN-2×2-16AL

TOP VIEW

BOTTOM VIEW

Symbol	Dimensions In Millimeters			
	MIN	MOD	MAX	
A	0.500	0.550	0.600	
A1	0.000	-	0.050	
A2	0.127 REF			
D	1.900	2.000	2.100	
D1	0.900	1.000	1.100	
E	1.900	2.000	2.100	
E1	0.900	1.000	1.100	
e	0.425 BSC			
k	0.150	-	-	
L	0.150	0.200	0.250	
L1	0.000	0.050	0.100	

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.
KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width $\mathbf{W 1}$ $(\mathbf{m m})$	A0 $(\mathbf{m m})$	$\mathbf{B 0}$ $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	P2 $(\mathbf{m m})$	\mathbf{W} $(\mathbf{m m})$	Pin1 Quadrant
UTQFN-2×2-16AL	$7^{\prime \prime}$	9.5	2.25	2.25	0.75	4.0	4.0	2.0	8.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
$7{ }^{\prime \prime}$ (Option)	368	227	224	8
$7^{\prime \prime}$	442	410	224	18

