

# SGM8435-2 Current Feedback, Wide-Band Differential PLC Driver

### **GENERAL DESCRIPTION**

The SGM8435-2 is a current feedback, differential wide-band PLC driver, which consists of dual, high voltage, low noise and high slew rate amplifiers. The high crest factor signals can be driven by the device with very low distortion levels in the power meter. These features make SGM8435-2 very suitable for power meter wide-band PLC applications. In order to avoid line surges caused by lightning, very reliable protection measures are taken at the output pins of the driver.

The SGM8435-2 can operate from 5V to 26V single supply. And it maintains wide bandwidth and high linearity over the whole full-scale range of power supply.

A disable control (DIS) pin is used to control the operation modes of the device. When DIS pin is high or floating, SGM8435-2 is in power-down mode. When DIS pin is low, SGM8435-2 is in full-power working mode.

The SGM8435-2 is available in a Green TQFN-4×4-24L package. It operates over an ambient temperature range of -40 $^{\circ}$ C to +85 $^{\circ}$ C.

TYPICAL APPLICATION

### FEATURES

- Current Feedback Amplifier A and B
- Supply Voltage Range: 5V to 26V
- Supply Current: 18.5mA (TYP)
- Power-Down Current: 30µA (TYP)
- Low Input Voltage Noise Density:  $10nV/\sqrt{Hz}$
- Input Offset Voltage: 13mV (MAX)
- High Slew Rate for Differential Signal: 800V/µs
- Amplifier A and B are Stable at Gain ≥ 2
- Output Over-Voltage Protection and Voltage Clamping Protection
- Output Current-Limit Protection
- Over-Temperature Protection
- Disable Control Pins for Low-Power Design
- -40°C to +85°C Operating Temperature Range
- Available in a Green TQFN-4×4-24L Package

### **APPLICATIONS**

Wide-Band, Power Line Communications (PLC)



#### Figure 1. Typical Application Circuit



### **PACKAGE/ORDERING INFORMATION**

| MODEL     | PACKAGE<br>DESCRIPTION | SPECIFIED<br>TEMPERATURE<br>RANGE | ORDERING<br>NUMBER  | PACKAGE<br>MARKING     | PACKING<br>OPTION   |
|-----------|------------------------|-----------------------------------|---------------------|------------------------|---------------------|
| SGM8435-2 | TQFN-4×4-24L           | -40°C to +85°C                    | SGM8435-2YTQF24G/TR | 0IR<br>YTQF24<br>XXXXX | Tape and Reel, 3000 |

#### MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

| X | Χ | Χ | Χ | X |   |     |
|---|---|---|---|---|---|-----|
| Γ |   |   |   |   |   | Ve  |
|   |   | L |   |   | _ | Tra |

Vendor Code
Trace Code

Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

#### **ABSOLUTE MAXIMUM RATINGS**

| Supply Voltage, +Vs to GND                    | 0.3V to 32V            |
|-----------------------------------------------|------------------------|
| Driver V <sub>IN</sub> Voltage                | GND to +V <sub>S</sub> |
| DIS Voltage to GND                            | 0.3V to 5.5V           |
| Power Dissipation, $P_D @ T_A = +25^{\circ}C$ |                        |
| TQFN-4×4-24L                                  | 3.7W                   |
| Package Thermal Resistance                    |                        |
| TQFN-4×4-24L, θ <sub>JA</sub>                 | 33.6°C/W               |
| TQFN-4×4-24L, θ <sub>JB</sub>                 | 12.6°C/W               |
| TQFN-4×4-24L, θ <sub>JC (TOP)</sub>           | 30.8°C/W               |
| TQFN-4×4-24L, θ <sub>JC (BOT)</sub>           | 6.5°C/W                |
| Junction Temperature                          | +150°C                 |
| Storage Temperature Range                     | 65°C to +150°C         |
| Lead Temperature (Soldering, 10s)             | +260°C                 |
| ESD Susceptibility                            |                        |
| HBM                                           | 4000V                  |
| CDM                                           | 1000V                  |
|                                               |                        |

#### **RECOMMENDED OPERATING CONDITIONS**

Operating Temperature Range .....-40°C to +85°C

#### **OVERSTRESS CAUTION**

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

#### **ESD SENSITIVITY CAUTION**

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

#### DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.



### **PIN CONFIGURATION**



TQFN-4×4-24L

#### PIN NAME **FUNCTION** GND 1, 6, 9 Ground. The GND pin must be connected with external ground. OUTB Output of Amplifier B. 2, 3 4, 5 OUTA Output of Amplifier A. 7, 8, 24 +Vs Single Power Supply for Amplifiers. (Power supply range: 5V to 26V) 10-12, 18-21, 23 NC No Internal Connection. 13 -INA Inverting Input of Amplifier A. +INA 14 Non-Inverting Input of Amplifier A. 15 +INB Non-Inverting Input of Amplifier B. 16 -INB Inverting Input of Amplifier B. 17 VCM Output Common Mode Bias. Disable Control Pin. The SGM8435-2 is in power-down (disabled) mode if the 22 DIS DIS pin is high or floating. When DIS pin is low, SGM8435-2 is in full-power mode. Must be connected to GND for optimal thermal performance. Connecting to Exposed Pad Exposed Pad other pins is not allowed.

### **PIN DESCRIPTION**



# **ELECTRICAL CHARACTERISTICS**

 $(V_S = 5V \text{ to } 24V, R_F = 1.2k\Omega, R_{L-DIFF} = 50\Omega \text{ and } A_V = 10, \text{ Full} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ typical values are at } T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$ 

| PARAMETER                               | SYMBOL                       | CONDITIONS                                                  | TEMP  | MIN     | TYP   | MAX | UNITS |
|-----------------------------------------|------------------------------|-------------------------------------------------------------|-------|---------|-------|-----|-------|
| Power Supply                            |                              |                                                             |       |         |       |     |       |
| Operating Voltage Range                 | Vs                           |                                                             | Full  | 5       |       | 26  | V     |
|                                         |                              |                                                             | +25°C |         | 18.5  | 22  |       |
|                                         | +I <sub>s</sub> (Full-Power) |                                                             | Full  |         |       | 28  | mA    |
| Negotive Supply Current                 |                              | All outputs at OV                                           | +25°C | -22     | -18.5 |     |       |
| Negative Supply Current                 | -Is (Full-Power)             | All outputs at 0V                                           | Full  | -28     |       |     | MA    |
| Positivo Supply Current                 | +L (Power Down)              | All outputs at $0 \frac{1}{1} = 2.2 \frac{1}{2}$            | +25°C |         | 30    | 50  |       |
|                                         |                              | All outputs at 0V, V <sub>DIS</sub> – 5.5V                  | Full  |         |       | 70  | μΑ    |
| Negotive Supply Current                 |                              | All outputs at $0)/()/(2.2)/(2.2)/($                        | +25°C | -50     | -30   |     |       |
| Negative Supply Current                 | -Is (Power-Down)             | All outputs at $0^{\circ}$ , $v_{\text{DIS}} = 3.3^{\circ}$ | Full  | -70     |       |     | μA    |
| Power Supply Rejections                 | DEDD                         |                                                             | +25°C | 76      | 90    |     | dB    |
| to Differential Output (Input Referred) | PSRR                         |                                                             | Full  | 72      |       |     |       |
| Power Supply Rejections                 | DEDD                         |                                                             | +25°C | 53      | 63    |     | ٩D    |
| to Common Mode Output (Output Referred) | PSKK                         | FORM                                                        |       | 48      |       |     | uв    |
| Input Characteristics                   | ·                            | ·                                                           | ·     |         |       |     |       |
| Input Offect Voltage                    | V <sub>os</sub>              |                                                             | +25°C | +25°C 5 |       | 13  | m\/   |
|                                         |                              |                                                             | Full  |         |       | 19  | IIIV  |
| Input Offect Veltage Migmetch           | ΔV <sub>os</sub>             |                                                             | +25°C |         | 2     | 15  | m)/   |
|                                         |                              |                                                             | Full  |         |       | 17  | mv    |
| Input Offset Voltage Drift              | $\Delta V_{OS} / \Delta T$   |                                                             | Full  |         | 0.1   |     | mV/°C |
| Non Inverting Input Riss Current        | 41                           |                                                             | +25°C |         | 35    | 70  | ۳Å    |
| Non-inventing input bias Current        | τı <sub>B</sub>              |                                                             | Full  |         |       | 90  | ΠA    |
| Non-Inverting Input Bias Current Drift  | ΔΙ <sub>Β</sub> /ΔΤ          |                                                             | Full  |         | 0.18  |     | nA/°C |
| Transimpedance <sup>(1)</sup>           | R <sub>oL</sub>              |                                                             | +25°C |         | 18    |     | MΩ    |
| Innut Llich Voltage                     | N/                           |                                                             | +25°C | 2       |       |     | V     |
|                                         | VIH                          |                                                             | Full  | 2.4     |       |     | v     |
|                                         |                              |                                                             | +25°C |         |       | 0.8 | N     |
| Input Low Voltage                       | VIL                          |                                                             | Full  |         |       | 0.5 | v     |
| lanut Dia Cumant                        | I <sub>IH</sub>              | DIS input, V <sub>DIS</sub> = 3.3V                          | Full  |         | 2     | 5   |       |
|                                         | l <sub>IL</sub>              | DIS input, V <sub>DIS</sub> = 0V                            | Full  | -4      | -2    |     | μΑ    |
| Differential Input Resistance (1)       | Z <sub>IN</sub>              |                                                             | +25°C |         | 6     |     | kΩ    |

NOTE: 1. Specified by design.



# **ELECTRICAL CHARACTERISTICS (continued)**

 $(V_S = 5V \text{ to } 24V, R_F = 1.2k\Omega, R_{L-DIFF} = 50\Omega \text{ and } A_V = 10, \text{ Full} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ typical values are at } T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$ 

| PARAMETER                                                                          | SYMBOL           | CONDITIONS                                                                               | TEMP  | MIN  | TYP  | MAX | UNITS  |  |
|------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------|-------|------|------|-----|--------|--|
| Output Characteristics                                                             |                  |                                                                                          |       |      |      |     | •      |  |
|                                                                                    |                  | $V_{\rm S}$ = 24V, $R_{\rm L}$ = open                                                    | +25°C |      | 22   |     | v      |  |
| Londod Outrut Suring                                                               | Ň                | $V_S = 24V, R_{L-DIFF} = 100\Omega$                                                      | +25°C |      | 19   |     |        |  |
| Loaded Output Swing                                                                | VOUT             | V 04V D 500                                                                              | +25°C | 17.8 | 18.5 |     |        |  |
|                                                                                    |                  | $v_{\rm S}$ = 24 V, R <sub>L-DIFF</sub> = 50 Ω                                           | Full  | 17   |      |     |        |  |
| Output Short-Circuit Current                                                       | I <sub>OUT</sub> | $V_{\rm S}$ = 24V, R <sub>L</sub> = 10 $\Omega$                                          | +25°C |      | ±0.5 |     | А      |  |
| Output Clamping Current                                                            |                  |                                                                                          | +25°C |      | 1.2  |     | А      |  |
| Dynamic Performance                                                                |                  |                                                                                          |       |      | •    | •   |        |  |
| -3dB Small-Signal Bandwidth                                                        | BW               | V <sub>S</sub> = 12V, V <sub>OUT</sub> = 2V <sub>P-P</sub>                               | +25°C |      | 60   |     | MHz    |  |
|                                                                                    |                  | $V_{\rm S}$ = 12V, f <sub>C</sub> = 500kHz, $V_{\rm OUT}$ = 2 $V_{P-P-DIFF}$             | +25°C |      | -82  |     |        |  |
|                                                                                    |                  | $V_{S}$ = 12V, $f_{C}$ = 700kHz, $V_{OUT}$ = 2 $V_{P-P-DIFF}$                            | +25°C |      | -80  |     | -      |  |
|                                                                                    | HD2              | $V_{S}$ = 12V, $f_{C}$ = 1MHz, $V_{OUT}$ = 2 $V_{P-P-DIFF}$                              | +25°C |      | -80  |     |        |  |
| 2nd Harmonic Distortion                                                            |                  | $V_{S}$ = 12V, $f_{C}$ = 2MHz, $V_{OUT}$ = 2 $V_{P-P-DIFF}$                              | +25°C |      | -77  |     | aBC    |  |
|                                                                                    |                  | $V_{S}$ = 12V, $f_{C}$ = 3MHz, $V_{OUT}$ = 2 $V_{P-P-DIFF}$                              | +25°C |      | -76  |     |        |  |
|                                                                                    |                  | $V_S$ = 12V, f <sub>C</sub> = 10MHz, $V_{OUT}$ = 2 $V_{P-P-DIFF}$                        | +25°C |      | -67  |     |        |  |
|                                                                                    | HD3              | $V_{S}$ = 12V, $f_{C}$ = 500kHz, $V_{OUT}$ = 2 $V_{P-P-DIFF}$                            | +25°C |      | -62  |     |        |  |
|                                                                                    |                  | $V_{S}$ = 12V, $f_{C}$ = 700kHz, $V_{OUT}$ = 2 $V_{P-P-DIFF}$                            | +25°C |      | -60  |     |        |  |
| 2rd Harmonia Distortion                                                            |                  | $V_{\text{S}}$ = 12V, $f_{\text{C}}$ = 1MHz, $V_{\text{OUT}}$ = 2 $V_{\text{P-P-DIFF}}$  | +25°C |      | -56  |     |        |  |
| Sid Harmonic Distortion                                                            |                  | $V_{\rm S}$ = 12V, f <sub>C</sub> = 2MHz, $V_{\rm OUT}$ = 2 $V_{P-P-DIFF}$               | +25°C |      | -50  |     | UDC    |  |
|                                                                                    |                  | $V_{\text{S}}$ = 12V, $f_{\text{C}}$ = 3MHz, $V_{\text{OUT}}$ = 2 $V_{\text{P-P-DIFF}}$  | +25°C |      | -47  |     |        |  |
|                                                                                    |                  | $V_{\text{S}}$ = 12V, $f_{\text{C}}$ = 10MHz, $V_{\text{OUT}}$ = 2 $V_{\text{P-P-DIFF}}$ | +25°C |      | -37  |     |        |  |
| Slew Rate (Differential Signal)                                                    | SR               | V <sub>OUT</sub> = 16V <sub>P-P-DIFF</sub>                                               | +25°C |      | 800  |     | V/µs   |  |
|                                                                                    | t <sub>EN</sub>  | From disable to enable time                                                              | +25°C |      | 18   |     |        |  |
|                                                                                    | t <sub>DIS</sub> | From enable to disable time                                                              | +25°C |      | 0.5  |     | μs     |  |
| Noise                                                                              |                  |                                                                                          |       |      |      |     |        |  |
| Input Voltage Noise Density                                                        | en               | f = 1MHz                                                                                 | +25°C |      | 10   |     | nV/√Hz |  |
| Non-Inverting Input Current Noise Density at each of the Two Inputs <sup>(1)</sup> | +i <sub>n</sub>  | f = 1MHz                                                                                 | +25°C |      | 2.5  |     | pA/√Hz |  |
| Inverting Input Current Noise Density at each of the Two Inputs <sup>(1)</sup>     | -i <sub>n</sub>  | f = 1MHz                                                                                 | +25°C |      | 40   |     | pA/√Hz |  |
| Over-Temperature Protection                                                        | 1                |                                                                                          |       |      | 1    | 1   | r      |  |
| Over-Temperature Protection                                                        |                  |                                                                                          |       |      | 150  |     | °C     |  |
| Over-Temperature Protection Hysteresis                                             |                  |                                                                                          |       |      | 20   |     | °C     |  |

NOTE: 1. Specified by design.



# **TYPICAL PERFORMANCE CHARACTERISTICS**







### FUNCTIONAL BLOCK DIAGRAM



Figure 2. Block Diagram

# **APPLICATION INFORMATION**

Figure 1 shows a typical application circuit for SGM8435-2 as a PLC driver. The full PLC power level is provided since the driver output stage has been sized. The transformer turns ratio will determine the actual peak value of output voltages and currents.

#### **Power Control Function**

The SGM8435-2 supports power control operation. Its supply current is controlled by the digital inputs DIS. DIS pin is pulled high internally. The device immediately enters power-down mode when DIS pin is floating.

The truth table of the SGM8435-2 is shown in Table 1. Table 1. Working Modes of SGM8435-2

| DIS Pin  | Operation                |
|----------|--------------------------|
| 0        | Full-Power Working Mode. |
| 1        | Power-Down Mode.         |
| Floating | Power-Down Mode.         |



# **APPLICATION INFORMATION (continued)**

#### **Breakdown Supply Voltage**

If the PLC driver is being used in an application that is part of a regulated power grid, the ability to withstand a supply voltage that is higher than the recommended voltage is important to ensure robustness.

In order to estimate the margin beyond the maximum supply voltage, several randomly selected samples are tested to show the robustness of SGM8435-2.

Figure 4 shows the configuration of this test. The SGM8435-2 is tested by manually increasing the supply voltage in 1V steps while simultaneously recording the supply current. This operation is performed from 5V until internal device is breakdown. Five samples are subjected to this test, and the results are shown in Figure 3.

A second test is done by using the same configuration shown in Figure 4. One sample is tested at a supply voltage of 42V for a duration of 168 hours. The initial and final values of the supply current are recorded. No significant increase in the supply current is observed and there are no signs of abnormal behavior or damage to the device.



Figure 3. Supply Current vs. Single-Supply Voltage



Figure 4. Breakdown Supply Voltage Test Configuration



Page

### **REVISION HISTORY**

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

#### Changes from Original (NOVEMBER 2023) to REV.A

|                                                 | _   |
|-------------------------------------------------|-----|
| Changed from product provide production data    | 11  |
| Changed from product preview to production data | 111 |



### PACKAGE OUTLINE DIMENSIONS

### TQFN-4×4-24L







RECOMMENDED LAND PATTERN (Unit: mm)

| Symbol | Dimensions In Millimeters |         |       |  |  |  |  |
|--------|---------------------------|---------|-------|--|--|--|--|
| Symbol | MIN                       | MOD     | MAX   |  |  |  |  |
| A      | 0.700                     | -       | 0.800 |  |  |  |  |
| A1     | 0.000                     | -       | 0.050 |  |  |  |  |
| A2     | 0.203 REF                 |         |       |  |  |  |  |
| b      | 0.180                     | 0.180 - |       |  |  |  |  |
| D      | 3.900                     | -       | 4.100 |  |  |  |  |
| E      | 3.900                     | -       | 4.100 |  |  |  |  |
| D1     | 2.600                     | 2.600 - |       |  |  |  |  |
| E1     | 2.600                     | -       | 2.800 |  |  |  |  |
| е      | 0.500 BSC                 |         |       |  |  |  |  |
| k      | 0.200 MIN                 |         |       |  |  |  |  |
| L      | 0.300 - 0.500             |         |       |  |  |  |  |
| eee    | 0.080                     |         |       |  |  |  |  |

NOTE: This drawing is subject to change without notice.



# TAPE AND REEL INFORMATION

#### **REEL DIMENSIONS**



NOTE: The picture is only for reference. Please make the object as the standard.

#### KEY PARAMETER LIST OF TAPE AND REEL

| Package Type | Reel<br>Diameter | Reel Width<br>W1<br>(mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P0<br>(mm) | P1<br>(mm) | P2<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------|------------------|--------------------------|------------|------------|------------|------------|------------|------------|-----------|------------------|
| TQFN-4×4-24L | 13″              | 12.4                     | 4.30       | 4.30       | 1.10       | 4.0        | 8.0        | 2.0        | 12.0      | Q2               |

### **CARTON BOX DIMENSIONS**



NOTE: The picture is only for reference. Please make the object as the standard.

### **KEY PARAMETER LIST OF CARTON BOX**

| Reel Type | Length<br>(mm) | Width<br>(mm) | Height<br>(mm) | Pizza/Carton | ]_ |
|-----------|----------------|---------------|----------------|--------------|----|
| 13″       | 386            | 280           | 370            | 5            |    |

