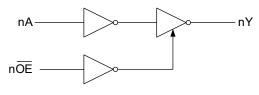


74LVC2G125 Dual Bus Buffer/Line Driver with 3-State Outputs


GENERAL DESCRIPTION

The 74LVC2G125 is a dual buffer/line driver with 3-state outputs and it is designed for 1.65V to $5.5V V_{CC}$ operation. The 3-state outputs are controlled by the output enable inputs (1 \overline{OE} and 2 \overline{OE}). When n \overline{OE} is low, the device passes data from the nA input to the nY output. When n \overline{OE} is high, all outputs are in the high-impedance state.

This device is highly suitable for partial power-down applications by using power-off leakage current (I_{OFF}) circuit. When the device is powered down, the outputs are disabled, and the current backflow can be prevented from passing through the device.

The 74LVC2G125 is available in Green VSSOP-8 and MSOP-8(S) packages. It operates over an operating temperature range of -40°C to +125°C.

LOGIC DIAGRAM

FEATURES

- Wide Supply Voltage Range: 1.65V to 5.5V
- Inputs Accept Voltages up to 5.5V
- +32mA/-32mA Output Current at V_{cc} = 4.5V
- Propagation Delay: t_{PD} = 4.2ns (TYP) at V_{CC} = 3.3V
- Low Power Dissipation: I_{cc} = 2µA (MAX)
- Allow Down Translation to Supply Voltage
- Support Partial Power-Down Mode
- Outputs in High-Impedance State when V_{cc} = 0V
- -40°C to +125°C Operating Temperature Range
- Available in Green VSSOP-8 and MSOP-8(S) Packages

APPLICATIONS

Industrial System Medical Equipment Computing: Server, PC and Notebook Telecom Equipment

FUNCTION TABLE

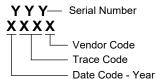
INPUT		OUTPUT
nOE	nA	nY
L	Н	Н
L	L	L
Н	X	Z

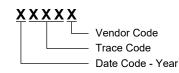
H = High Voltage Level

L = Low Voltage Level

Z = High-Impedance State

X = Don't Care




PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
74LVC2G125	VSSOP-8	-40°C to +125°C	74LVC2G125XVS8G/TR	0DM XXXX	Tape and Reel, 3000
74LVC2G125	MSOP-8(S)	-40°C to +125°C	74LVC2G125XSMS8G/TR	0DY XSMS8 XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXX = Date Code, Trace Code and Vendor Code. XXXXX = Date Code, Trace Code and Vendor Code. VSSOP-8 MSOP-8(S)

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Range, V_{CC} 0.5V to 6.5V
Input Voltage Range, V ₁ ⁽¹⁾ 0.5V to 6.5V
Output Voltage Range, Vo ⁽¹⁾
High-State or Low-State0.5V to MIN(6.5V, V _{CC} + 0.5V)
High-Impedance or Power-Off State0.5V to 6.5V
Input Clamp Current, I _{IK} (V _I < 0V)50mA
Output Clamp Current, I _{OK} (V _O < 0V)50mA
Continuous Output Current, I ₀ ±50mA
Continuous Current through V _{CC} or GND±100mA
Junction Temperature ⁽²⁾ +150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility ^{(3) (4)}
HBM±4000V
CDM±1000V

NOTES:

1. The input and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.

2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

3. For human body model (HBM), all pins comply with ANSI/ESDA/JEDEC JS-001 specifications.

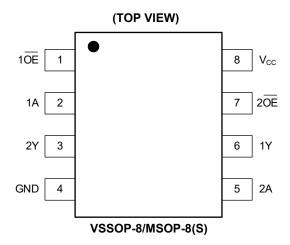
4. For charged device model (CDM), all pins comply with ANSI/ESDA/JEDEC JS-002 specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

Supply Voltage Range, V _{CC}	1.65V to 5.5V
Input Voltage Range, V _I	0V to 5.5V
Output Voltage Range, V ₀	
High-State or Low-State	0V to V _{CC}
High-Impedance or Power-Off State	0V to 5.5V
Output Current, Io	±32mA (MAX)
Input Transition Rise or Fall Rate, $\Delta t / \Delta V$	
V_{CC} = 1.8V ± 0.15V, 2.5V ± 0.2V	20ns/V (MAX)
$V_{CC} = 3.3V \pm 0.3V$	10ns/V (MAX)
V _{CC} = 5.0V ± 0.5V	5ns/V (MAX)
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION


Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN	NAME	FUNCTION
1, 7	$1\overline{OE}, 2\overline{OE}$	Output Enable Inputs (Active-Low).
2, 5	1A, 2A	Data Inputs.
6, 3	1Y, 2Y	Data Outputs.
4	GND	Ground.
8	Vcc	Supply Voltage.

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
		V _{CC} = 1.65V to 1.95V	Full	$0.65 \times V_{CC}$				
		V _{CC} = 2.3V to 2.7V	Full	1.7				
High-Level Input Voltage	V _{IH}	V _{CC} = 3.0V to 3.6V	Full	2.0			V	
		V _{CC} = 4.5V to 5.5V	Full	$0.70 \times V_{CC}$				
		V _{CC} = 1.65V to 1.95V	Full			$0.35 \times V_{CC}$		
	.,	V _{CC} = 2.3V to 2.7V	Full			0.7	.,	
Low-Level Input Voltage	VIL	V _{CC} = 3.0V to 3.6V	Full			0.8	V	
		V _{CC} = 4.5V to 5.5V	Full			0.30 × V _{CC}		
		V_{CC} = 1.65V to 5.5V, I_{OH} = -100 μ A	Full	V _{cc} - 0.1	V _{CC} - 0.01			
		V _{CC} = 1.65V, I _{OH} = -4mA	Full	1.2	1.5			
		V _{CC} = 1.8V, I _{OH} = -8mA	Full	1.25	1.6			
High-Level Output Voltage	V _{он}	V _{CC} = 2.3V, I _{OH} = -8mA	Full	1.9	2.1		V	
		V _{CC} = 3.0V, I _{OH} = -16mA	Full	2.4	2.8			
		V _{CC} = 3.0V, I _{OH} = -24mA	Full	2.3	2.7			
		V _{CC} = 4.5V, I _{OH} = -32mA	Full	3.8	4.2			
	V _{OL}	V_{CC} = 1.65V to 5.5V, I_{OL} = 100 μ A	Full		0.01	0.10	v	
		V _{CC} = 1.65V, I _{OL} = 4mA	Full		0.10	0.45		
		V _{CC} = 1.8V, I _{OL} = 8mA	Full		0.15	0.55		
Low-Level Output Voltage		V _{CC} = 2.3V, I _{OL} = 8mA	Full		0.12	0.30		
		V _{CC} = 3.0V, I _{OL} = 16mA	Full		0.20	0.40		
		V _{CC} = 3.0V, I _{OL} = 24mA	Full		0.30	0.55	1	
		V _{CC} = 4.5V, I _{OL} = 32mA	Full		0.35	0.75		
Input Leakage Current	I,	nA or $n\overline{OE}$ inputs, V _{CC} = 0V to 5.5V, V ₁ = 5.5V or GND	Full		±0.1	±2	μA	
Off-State Output Current	l _{oz}	$V_{CC} = 3.6V, V_{O} = 0V \text{ to } 5.5V$	Full		±0.1	±5	μA	
Power-Off Leakage Current	I _{OFF}	V_{CC} = 0V, V _I or V _O = 5.5V	Full		±0.1	±5	μA	
Supply Current	I _{CC}	V_{CC} = 1.65V to 5.5V, V_{I} = 5.5V or GND, I_{O} = 0A	Full		0.1	2	μA	
Additional Supply Current	ΔI_{CC}	V_{CC} = 3.0V to 5.5V, one input at V_{CC} - 0.6V, other inputs at V_{CC} or GND	Full		0.1	10	μA	
Input Capacitance	Cı	Data inputs, V_{CC} = 3.3V, V_I = V_{CC} or GND	+25℃		3.2		рF	
mpar Oapaonanoe		Control inputs, V_{CC} = 3.3V, V_I = V_{CC} or GND	+25℃		3.4		Ч	
Output Capacitance	Co	V_{CC} = 3.3V, V_{O} = V_{CC} or GND	+25°C		5.4		pF	

DYNAMIC CHARACTERISTICS

(See Figure 1 for test circuit. Full = -40°C to +125°C, all typical values are measured at T_A = +25°C and V_{CC} = 1.8V, 2.5V, 3.3V and 5.0V respectively, unless otherwise noted.)

PARAMETER	SYMBOL	COND	ITIONS	TEMP	MIN ⁽¹⁾	TYP	MAX ⁽¹⁾	UNITS
			$V_{CC} = 1.8V \pm 0.15V$	Full	1.0	8.3	19.2	
Propagation Delay ⁽²⁾			$V_{CC} = 2.5V \pm 0.2V$	Full	1.0	5.0	9.6	
Propagation Delay	t _{PD}	nA to nY, see Figure 2	$V_{CC} = 3.3V \pm 0.3V$	Full	1.0	4.2	7.7	ns
			$V_{CC} = 5.0V \pm 0.5V$	Full	0.5	3.5	5.9	
			$V_{CC} = 1.8V \pm 0.15V$	Full	1.0	9.6	24.1	
Enable Time ⁽²⁾			$V_{CC} = 2.5V \pm 0.2V$	Full	1.0	5.8	11.1	
	t _{EN}	$n\overline{OE}$ to nY, see Figure 3	$V_{CC} = 3.3V \pm 0.3V$	Full	1.0	4.7	8.7	ns
			$V_{CC} = 5.0V \pm 0.5V$	Full	0.5	3.9	6.5	1
		$n\overline{OE}$ to nY, see Figure 3	$V_{CC} = 1.8V \pm 0.15V$	Full	1.0	7.3	14.8	ns
Disable Time ⁽²⁾			$V_{CC} = 2.5V \pm 0.2V$	Full	0.5	4.4	7.8	
Disable Time ?	t _{DIS}		$V_{CC} = 3.3V \pm 0.3V$	Full	1.0	4.0	7.0	
			$V_{CC} = 5.0V \pm 0.5V$	Full	0.5	3.2	5.2	
			V _{CC} = 1.8V	+25°C		15.0		pF
		Outputs enabled,	V _{CC} = 2.5V	+25°C		15.0		
		f = 10MHz	V _{CC} = 3.3V	+25°C		15.0		
Power Dissipation	6		V _{CC} = 5.0V	+25°C		15.0		
Capacitance ⁽³⁾	C _{PD}		V _{CC} = 1.8V	+25°C		0.3		
		Outputs disabled,	V _{CC} = 2.5V	+25°C		0.3		
		f = 10MHz	V _{CC} = 3.3V	+25°C		0.3		
			V _{CC} = 5.0V	+25°C		0.4		1

NOTES:

1. Specified by design and characterization, not production tested.

2. t_{PD} is the same as t_{PLH} and t_{PHL} . t_{EN} is the same as t_{PZH} and t_{PZL} . t_{DIS} is the same as t_{PLZ} and t_{PHZ} .

3. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

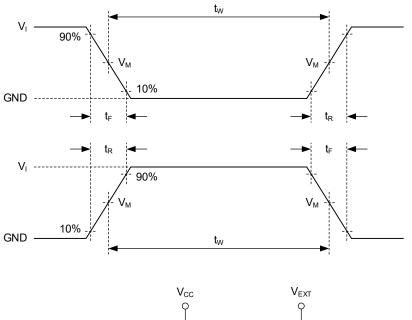
 $\mathsf{P}_{\mathsf{D}} = \mathsf{C}_{\mathsf{P}\mathsf{D}} \times \mathsf{V}_{\mathsf{C}\mathsf{C}}^2 \times \mathsf{f}_{\mathsf{i}} \times \mathsf{N} + \Sigma(\mathsf{C}_{\mathsf{L}} \times \mathsf{V}_{\mathsf{C}\mathsf{C}}^2 \times \mathsf{f}_{\mathsf{o}})$

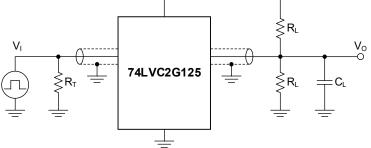
where:

 f_i = Input frequency in MHz.

 f_o = Output frequency in MHz.

 C_L = Output load capacitance in pF.


 V_{CC} = Supply voltage in Volts.


N = Number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = Sum of outputs.

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

R_L: Load resistance.

C_L: Load capacitance (includes jig and probe).

 R_T : Termination resistance (equals to output impedance Z_0 of the pulse generator).

V_{EXT}: External voltage is used to measure switching time.

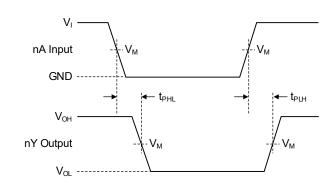
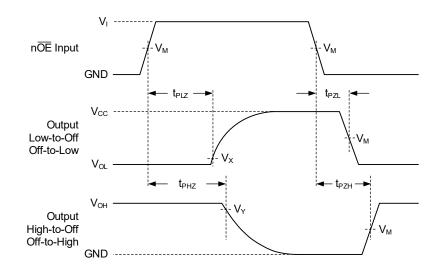

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

SUPPLY VOLTAGE	INPUT		LOAD		V _{EXT}		
Vcc	VI	t _R , t _F	C∟	RL	t _{PLH} , t _{PHL}	t _{PLZ} , t _{PZL}	t _{PHZ} , t _{PZH}
1.8V ± 0.15V	V _{CC}	≤ 2.0ns	30pF	1kΩ	Open	$2 \times V_{CC}$	GND
2.5V ± 0.2V	V _{CC}	≤ 2.0ns	30pF	500Ω	Open	$2 \times V_{CC}$	GND
3.3V ± 0.3V	3V	≤ 2.5ns	50pF	500Ω	Open	6V	GND
5.0V ± 0.5V	Vcc	≤ 2.5ns	50pF	500Ω	Open	2 × V _{CC}	GND

WAVEFORMS



Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 2. Input (nA) to Output (nY) Propagation Delay Times

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. Enable and Disable Times

Table 2. Measurement Points SUPPLY VOLTAGE INPUT OUTPUT V_M⁽¹⁾ Vcc V Vм Vx V_{OH} - 0.15V 1.8V ± 0.15V $0.5 \times V_{CC}$ $0.5 \times V_{CC}$ Vol + 0.15V V_{CC} 2.5V ± 0.2V V_{CC} $0.5 \times V_{CC}$ $0.5 \times V_{CC}$ V_{OL} + 0.15V V_{OH} - 0.15V 3.3V ± 0.3V 3V 1.5V 1.5V V_{OL} + 0.3V V_{OH} - 0.3V 5.0V ± 0.5V V_{OL} + 0.3V V_{OH} - 0.3V V_{CC} $0.5 \times V_{CC}$ 0.5 × V_{CC}

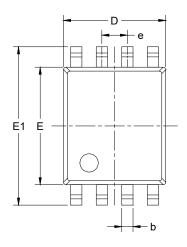
NOTE:

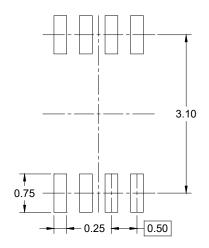
1. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 2.5ns.

Vy

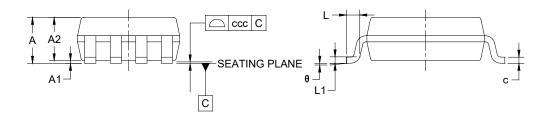
Page

REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Original	(DECEMBER 2024) to REV.A
enangee nem engina	

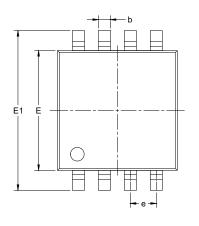
Changed from product preview to production dataAll
--

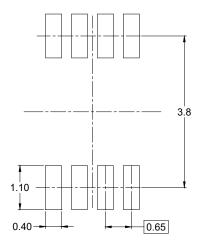


PACKAGE OUTLINE DIMENSIONS VSSOP-8

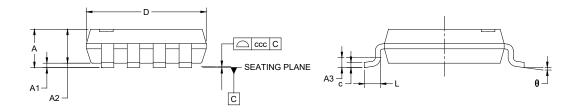
RECOMMENDED LAND PATTERN (Unit: mm)

Currence al	Dimensions In Millimeters				
Symbol	MIN	NOM	МАХ		
A	-	-	1.000		
A1	0.000	-	0.150		
A2	0.600		0.850		
b	0.170	-	0.270		
С	0.080		0.230		
D	1.900	-	2.100		
E	2.200	-	2.400		
E1	3.000	- 3.200			
е		0.500 BSC			
L	0.150	-	0.400		
L1	0.120 BSC				
θ	0°	-	8°		
ссс	0.100				


NOTES:


This drawing is subject to change without notice.
The dimensions do not include mold flashes, protrusions or gate burrs.

3. Reference JEDEC MO-187 CA.

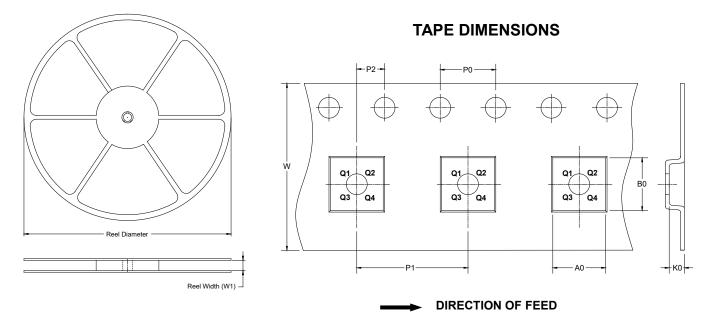


PACKAGE OUTLINE DIMENSIONS MSOP-8(S)

RECOMMENDED LAND PATTERN (Unit: mm)

Symphol	Dimensions In Millimeters					
Symbol	MIN	NOM	МАХ			
A	-	-	1.350			
A1	0.000	-	0.150			
A2		0.850 REF				
A3		0.250 REF				
b	0.150	-	0.380			
С	0.080	-	0.180			
D	2.750	-	3.150			
E	2.600	-	3.100			
E1	3.750	-	4.250			
е	0.650 BSC					
L	0.200	-	0.600			
θ	0°	-	8°			
ccc	0.100					

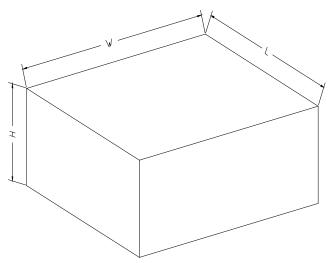
NOTES:


This drawing is subject to change without notice.
The dimensions do not include mold flashes, protrusions or gate burrs.

3. Reference JEDEC MO-187.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
VSSOP-8	7"	9.5	2.25	3.35	1.05	4.0	4.0	2.0	8.0	Q3
MSOP-8(S)	13"	12.4	3.35	4.45	1.45	4.0	4.0	2.0	12.0	Q3

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7″	442	410	224	18]_
13″	386	280	370	5	DD0002

KEY PARAMETER LIST OF CARTON BOX