

SGM3145 8-Channel PWM Dimming Charge Pump White LED Driver

GENERAL DESCRIPTION

The SGM3145 is a current-regulated white LED driver with integrated low dropout current sources and a high efficiency charge pump. The charge pump has automatically selectable $1 \times / 1.5 \times$ fractional operation modes. The SGM3145 is well suited for white LED applications powered by a Li-lon battery due to small equivalent open-loop resistance in $1 \times$ mode.

The supply voltage operates from 2.7V to 5.5V. The SGM3145 supports up to 8 LEDs for 27mA maximum current per string. The LED reference current is set through an internal resistor. PWM dimming interface allows programmable LED current levels from 0mA to 27mA for brightness control. If the EN pin is logic low, the SGM3145 enters shutdown mode. Built-in soft-start circuitry avoids excessive inrush current during startup and mode transition.

The SGM3145 is available in a Green TQFN-3×3-20L package. It operates over an ambient temperature range of-40°C to +85°C.

FEATURES

- Input Voltage Range: 2.7V to 5.5V
- Support up to 8 LEDs at 27mA Each
- PWM Dimming Interface
- 1× and 1.5× Charge Pump for High Conversion Efficiency
- Switching Frequency: 0.93MHz
- ±4.8% Regulated LED Current Matching
- Built-in Soft-Start for Reducing Inrush Current
- Low Input Ripple and Low EMI
- Protection Features
 - Over-Current Protection
 - Under-Voltage Lockout
 - Thermal Shutdown
- Operating Temperature Range: -40°C to +85°C
- Available a in Green TQFN-3×3-20L Package

APPLICATIONS

White LED Backlighting Mobile Phones, MP3s Digital Still Cameras LCD Displays

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM3145	TQFN-3×3-20L	-40°C to +85°C	SGM3145YTQG20G/TR	SGM 3145QG XXXXX	Tape and Reel, 3000

MARKING INFORMATION

NOTE: XXXXX = Date Code and Vendor Code.

XXXXX

Vendor Code

Date Code - Week

— Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

V _{IN} to GND	0.3V to 6V
The Other Pins to GND	0.3V to V_{IN}
Power Dissipation, $P_D @ T_A = +25^{\circ}C$	
TQFN-3×3-20L	1.48W
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature Range (Soldering, 10	s)+260°C
ESD Susceptibility	
HBM	2000V
MM	200V

RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range-40°C to +85°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	I/O	FUNCTION
1 - 8	LED8 - LED1	I	Current Sink Input. Connect to the cathode of the corresponding LED.
9	PGND	-	Power Ground Pin.
10	VOUT	0	Output Voltage Source. Connect to the output capacitor and the anodes of the LEDs.
11, 20	NC	-	No Connection.
12	C2P	-	Positive Terminal of the Flying Capacitor 2.
13	C1P	-	Positive Terminal of the Flying t Capacitor 1.
14	C1N	-	Negative Terminal of the Flying Capacitor 1.
15	C2N	-	Negative Terminal of the Flying Capacitor 2.
16	VIN	I	Input Supply Pin.
17	AGND	-	Analog Ground Pin.
18	PWM	I	PWM Dimming Input. Duty cycle = 0%, I_{OUT} = 0mA; duty cycle =100%, I_{OUT} = 27mA.
19	EN	I	Active-High Enable Pin. Pull EN high to enable the device, and pull EN low to disable the device. In normal operation if V_{IN} ramp-up is slow, it is recommended to connect EN to VIN only after V_{IN} has settled.
Exposed Pad	GND	-	Exposed Pad. It should be soldered to PCB board and connected to GND.

ELECTRICAL CHARACTERISTICS

(V_{IN} = 3.6V, EN = V_{IN}, T_A = +25 ^{\circ}C, unless otherwise noted.)

PARAMETER		SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Vol	tage and Current						
Input Voltag	ge Range	V _{IN}		2.7		5.5	V
Ouioscont [Power Supply Current	I.	V_{IN} = 4.2V, 1× Mode, I_{LEDx} = 0mA		155	240	μA
Quiescent r		IQ	1.5× Mode, I _{LEDx} = 0mA		1.35		mA
Shutdown S	Supply Current	I _{SHDN}	$EN = GND, V_{IN} = 4.2V$		0.01	2.5	μA
Charge Pu	mp Stage						
Over-Voltag	ge Limit	V _{OUT}			5.4		V
Start-Up Tir	ne		C_{OUT} = 1µF, I _{LEDx} ≥ 0.9 × I _{LEDx-set}		280		μs
Soft-Start D	Duration				150		μs
Switching F	requency	f		0.7	0.93	1.25	MHz
Efficiency		η	At 1× Mode before switching to 1.5× Mode		90		%
Shutdown 1	Femperature		Temperature rising		140		°C
Shutdown 1	Temperature Hysteresis				10		°C
Input Current Limit					300		mA
Current Sir	nks						
Recommen Current Sin	ded Maximum Current per k	I _{LEDx}	$3.2V \le V_{IN} \le 5.5V$	24	27	30	mA
Current Mat	tching between Any Two Outputs		$V_{LEDx} = 3.2V, I_{LEDx} = 27mA$	-4.8	1	4.8	%
Line Regula	ation		$3.3V < V_{IN} < 5.5V, V_{LEDx} = 3.2V$		1.4		%
Voltage at L	_ED _x to GND	V _{SOURCE}	V _{IN} = 4.2V		550		mV
Threshold	of Switching between 1× and 1.	5× Mode					
1× Mode to	1.5× Mode		V _{LEDX} = 3.2V		3.48		V
1.5× Mode to 1× Mode			V _{LEDX} = 3.2V		3.65		V
EN and PW	/M Logic						
PWM Low 1	Time for Dimming	T _{LO}		0.5			μs
PWM High	Time for Dimming	T _{HI}		4			μs
Threshold	Logic-High Voltage	V _{IH}		1.2			V
THESHOL	Logic-Low Voltage	VIL				0.4	V

8-Channel PWM Dimming Charge Pump White LED Driver

TYPICAL PERFORMANCE CHARACTERISTICS

SG Micro Corp

SGM3145

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

TYPICAL APPLICATION

Figure 1. For 8-WLEDs Application Circuit

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

JANUARY 2013 – REV.A to REV.A.1	Page
Added Tape and Reel Information section	
Changes from Original (MAY 2012) to REV.A	Page
Changed from product preview to production data	All

PACKAGE OUTLINE DIMENSIONS TQFN-3×3-20L

NOTE: All linear dimensions are in millimeters.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TQFN-3×3-20L	13″	12.4	3.30	3.30	1.10	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton		
13″	386	280	370	5	DUUUZ	

