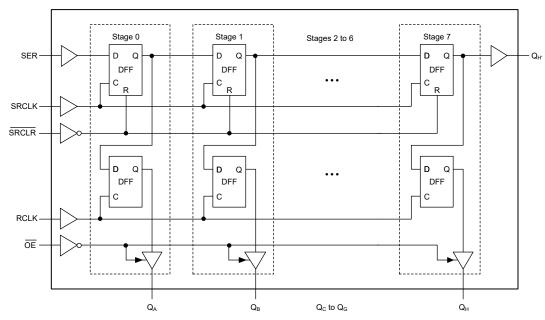


74AHCT595 8-Bit Serial-In/Serial-Out or Parallel-Out Shift Register with Output Latches

GENERAL DESCRIPTION

The 74AHCT595 is an 8-bit serial-in/serial-out or parallel-out shift register with output latches designed for 4.5V to 5.5V V_{CC} operation.

The device integrates an 8-bit shift register and an 8-bit D-type storage register. The storage register features parallel 3-state outputs. The shift register provides a clear input (\overline{SRCLR}) with direct overriding function, serial input (SER) and serial outputs to implement cascading. When output enable input (\overline{OE}) is held low, the data in storage register will appear at the output. When \overline{OE} is held high, all outputs are in high-impedance state.


Both the shift register and storage register have separate clocks. The shift register clock (SRCLK) and storage register clock (RCLK) are positive-edge triggered.

FEATURES

- Supply Voltage Range: 4.5V to 5.5V
- +8mA/-8mA Output Current
- Direct Clear Input of Shift Register
- Inputs are Compatible with TTL-Voltage
- Latch-up Performance (> 100mA) Meets JESD 78, Class II Standard
- -40°C to +125°C Operating Temperature Range
- Available in Green TSSOP-16 and SOIC-16 Packages

APPLICATIONS

Computing: Server, PC, Notebook, Network Switch Telecom Equipment Medical Equipment Industrial Equipment

LOGIC DIAGRAM

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
74AHCT595	TSSOP-16	-40°C to +125°C	74AHCT595XTS16G/TR	0LA XTS16 XXXXX	Tape and Reel, 4000
74AHC1595	SOIC-16	-40°C to +125°C	74AHCT595XS16G/TR	74AHCT595XS16 XXXXX	Tape and Reel, 2500

MARKING INFORMATION

NOTE: XXXXXX = Date Code, Trace Code and Vendor Code.

— Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS (1)

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range, V _{CC}	4.5V to 5.5V
Input Voltage Range, VI (4)	0V to 5.5V
Output Voltage Range, Vo	$0V$ to V_{CC}
Output Current, I _O	±8mA (MAX)
Input Transition Rise or Fall Rate, $\Delta t/\Delta V$	
V _{CC} = 4.5V to 5.5V	20ns/V (MAX)
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

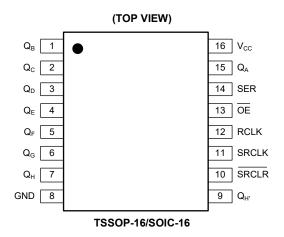
1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

2. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

4. Unused input pins must be held at V_{CC} or GND to guarantee the device in normal operation.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

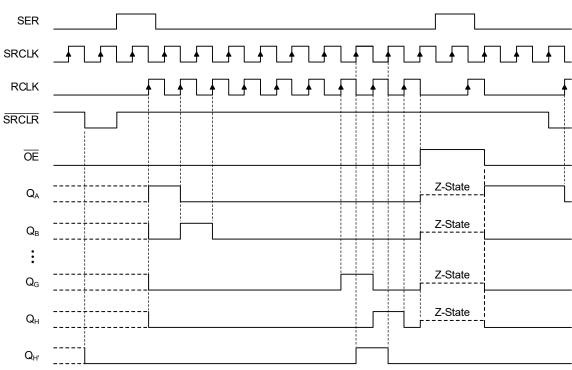
PIN CONFIGURATIONS

PIN DESCRIPTION

PIN	NAME	FUNCTION
15, 1, 2, 3, 4, 5, 6, 7	$Q_A,Q_B,Q_C,Q_D,Q_E,Q_F,Q_G,Q_H$	Parallel Data Outputs.
8	GND	Ground.
9	Q _H '	Serial Data Output.
10	SRCLR	Shift Register Clear Input (Active Low).
11	SRCLK	Shift Register Clock Input (Rising Edge Triggered).
12	RCLK	Storage Register Clock Input (Rising Edge Triggered).
13	ŌĒ	Output Enable Input (Active Low).
14	SER	Serial Data Input.
16	V _{cc}	Power Supply.

8-Bit Serial-In/Serial-Out or Parallel-Out Shift Register with Output Latches

FUNCTION TABLE


		INPUTS			FUNCTION	
SER	SRCLK	SRCLR	RCLK	ŌĒ	FUNCTION	
X	x	X	X	Н	Outputs (Q_A-Q_H) are disabled.	
X	X	X	X	L	Outputs (Q_A-Q_H) are enabled.	
X	Х	L	X	X	Data of the shift register is cleared.	
L	↑ (н	X	x	Logic low-level shifted into shift register Stage 0. Other stages can transfer data from the previous stage respectively.	
н	↑	Н	X	X	Logic high-level shifted into shift register Stage 0. Other stages can transfer data from the previous stage respectively.	
X	X	X	Ť	X	Data of the shift register is transferred to the storage register.	

H = High Voltage Level

L = Low Voltage Level

 \uparrow = Low to High Clock Transition

X = Don't Care

TIMING DIAGRAM

Figure 1. Timing Diagram

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
High-Level Input Voltage	V _{IH}		Full	2			V
Low-Level Input Voltage	VIL		Full			0.8	V
		V _{CC} = 4.5V, I _{OH} = -50µA	Full	4.4	4.495		
High-Level Output Voltage	V _{OH}	V _{CC} = 4.5V, I _{OH} = -8mA	Full	4.0	4.28		V
		V _{CC} = 5.5V, I _{OH} = -8mA	Full	5.08	5.31		
		$V_{CC} = 4.5V, I_{OL} = 50\mu A$	Full		0.005	0.10	
Low-Level Output Voltage	V _{OL}	V _{CC} = 4.5V, I _{OL} = 8mA	Full		0.21	0.44	V
		V _{CC} = 5.5V, I _{OL} = 8mA	Full		0.20	0.42	
Input Leakage Current	lı	V_{CC} = 0 to 5.5V, V_I = V_{CC} or GND	Full			±2	μA
Off-State Output Current	I _{oz}	Q_A-Q_H , V_{CC} = 5.5V, V_O = V_{CC} or GND	Full			±2	μA
Supply Current	Icc	V_{CC} = 5.5V, V_1 = V_{CC} or GND, I_0 = 0A	Full			20	μA
Additional Supply Current (1)	ΔI _{CC}	V_{CC} = 5.5V, one input at 3.4V, other inputs at V_{CC} or GND	Full			1	mA
Input Capacitance	Cı	V_{CC} = 5.0V, V_I = V_{CC} or GND	+25°C		4.5		pF
Output Capacitance	Co	V_{CC} = 5.0V, V_{O} = V_{CC} or GND	+25°C		6		pF

NOTE:

1. It is the increase in supply current for per input at the specified TTL voltage levels except Vcc or GND.

NOISE CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at V_{CC} = 5.0V, C_L = 50pF and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
Maximum Dynamic Low-Level Output Voltage	V _{OLDMAX}	Quiet output	+25°C		1		V
Minimum Dynamic Low-Level Output Voltage	V _{OLDMIN}	Quiet output	+25°C		-0.6		V
Minimum Dynamic High-Level Output Voltage	V _{OHDMIN}	Quiet output	+25°C		3.2		V
Dynamic High-Level Input Voltage	V _{IHD}		Full	2			V
Dynamic Low-Level Input Voltage	V _{ILD}		Full			0.8	V

8-Bit Serial-In/Serial-Out or Parallel-Out Shift Register with Output Latches

DYNAMIC CHARACTERISTICS

(See Figure 2 for test circuit. Full = -40°C to +125°C, all typical values are measured at V_{CC} = 5.0V ± 0.5V and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	C	ONDITIONS	TEMP	MIN ⁽¹⁾	ТҮР	MAX ⁽¹⁾	UNITS
			C _L = 15pF	Full	1	4	8.5	
Low to High Propagation Delay	t _{PLH}		C _L = 50pF	Full	1	5.5	11.5	ns
link to Low Droponation Dalay		RCLK to Q _A -Q _H	C _L = 15pF	Full	1	4	8.5	
High to Low Propagation Delay	t _{PHL}		C _L = 50pF	Full	1	5.5	11.5	ns
Low to Lligh Dronggation Delay	+		C∟ = 15pF	Full	1	4	8.5	
Low to High Propagation Delay	t _{PLH}	SRCLK to Q _H	C _L = 50pF	Full	1	5.5	11.4	ns
Lligh to Low Propagation Dalay		SRULK IO QH	C _L = 15pF	Full	1	4	8.5	20
High to Low Propagation Delay	t _{PHL}		C∟ = 50pF	Full	1	5.5	11.4	ns
Llink to Low Dronovstian Dalaw			C∟ = 15pF	Full	1	8	13.5	
High to Low Propagation Delay	t _{PHL}	SRCLR to Q _H	C _L = 50pF	Full	1	10	16	ns
Off Chata to Llink Dransmation Dalay		\overline{OE} to $Q_A - Q_H$	C _L = 15pF	Full	1	6.5	10.5	ns ns
Off-State to High Propagation Delay	t _{PZH}		C _L = 50pF	Full	1	8	13.5	
Off-State to Low Propagation Delay	t PZL		C∟ = 15pF	Full	1	6	10.5	
			C _L = 50pF	Full	1	8	13.5	
		\overline{OE} to $Q_A - Q_H$	C _L = 15pF	Full	1	3	6.5	- ns
High to Off-State Propagation Delay	t _{PHZ}		C _L = 50pF	Full	1	4	8.5	
Low to Off-State Propagation Delay	+		C∟ = 15pF	Full	1	3	6.5	- ns
Low to On-State Propagation Delay	t _{PLZ}		C∟ = 50pF	Full	1	4	8.5	
	£	C _L = 15pF		Full	115	165		MHz
Maximum Frequency	f _{MAX}	C _L = 50pF		Full	85	160		
		SRCLK high or lov	v	Full	5.5			
Pulse Width	tw	RCLK high or low		Full	5.5			ns
		SRCLR low		Full	8			
		SER before SRC	LK ↑	Full	9			
Set-up Time ⁽²⁾		SRCLK ↑ before	RCLK ↑	Full	5			- ns
	t _{s∪}	SRCLR low befo	ore RCLK ↑	Full	10			
		SRCLR high (ina	active) before SRCLK \uparrow ⁽³⁾	Full	5			
Hold Time	t _H	SER after SRCL	SER after SRCLK ↑		5			ns
Power Dissipation Capacitance (4) (5)	C _{PD}	No load, $V_{CC} = 5$	0V, f = 10MHz	+25°C		30		pF

NOTES:

1. Specified by design and characterization, not production tested.

2. The set-up time enables the storage register to get stable data from the shift register. In this case where clocks can be tied together, the shift register is a clock pulse in front of the storage register.

3. t_{REC} is the same as $\ensuremath{\overline{\text{SRCLR}}}$ high (inactive) before SRCLK $\uparrow.$

4. C_{PD} is used to determine the dynamic power dissipation (P_D in $\mu W).$

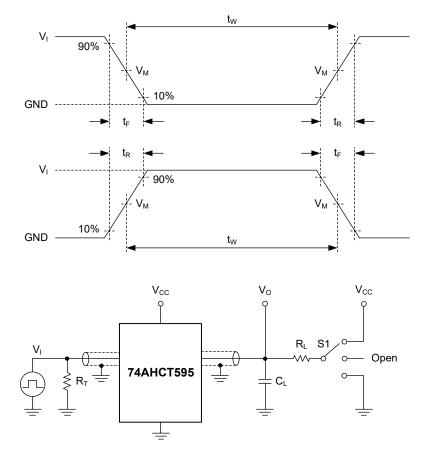
 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o})$ where: f = Input frequency in MHZ

 f_i = Input frequency in MHz.

 f_o = Output frequency in MHz.

 C_L = Output load capacitance in pF.

 V_{CC} = Supply voltage in Volts.


 $\Sigma(C_L \times V_{CC}^2 \times f_o) = Sum of outputs.$

5. All 9 outputs switching.

8-Bit Serial-In/Serial-Out or Parallel-Out Shift Register with Output Latches

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions test circuit:

RL: Load resistance.

CL: Load capacitance (includes jig and probe).

 R_T : Termination resistance (equals to output impedance Z_0 of the pulse generator).

S1: Test selection switch.

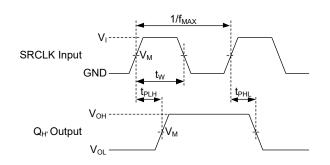
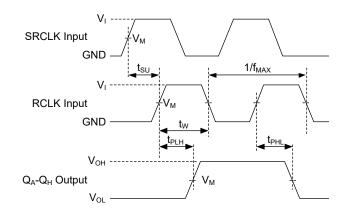

Figure 2. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

SUPPLY VOLTAGE	INPUT		LOAD		S1 POSITION		
V _{cc}	VI	t _R , t _F	CL	RL	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	$t_{\text{PZL}}, t_{\text{PLZ}}$
4.5V to 5.5V	Vcc	\leq 3.0ns	15pF, 50pF	1kΩ	Open	GND	Vcc

WAVEFORMS

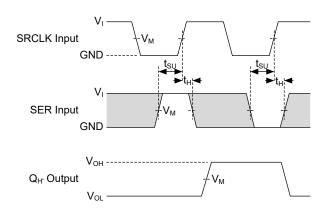


Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. Shift Clock Pulse, Maximum Frequency and Shift Register Clock Input to Output Propagation Delays



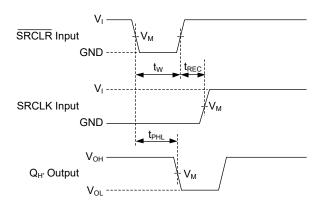
Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 4. Storage Register Clock to Output Propagation Delays

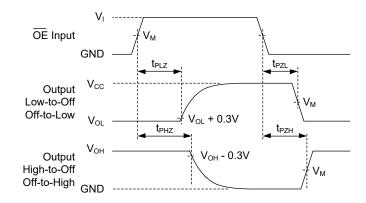
Test conditions are given in Table 1.


Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 5. Data Set-up and Hold Times

WAVEFORMS (continued)



Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 6. Clear Input to Output Propagation Delays

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 7. Enable and Disable Times

Table 2. Measurement Points

SUPPLY VOLTAGE	INF	OUTPUT	
Vcc	VI	V _M	
4.5V to 5.5V	V _{CC}	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$

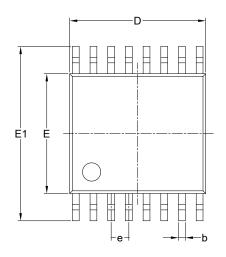
NOTE:

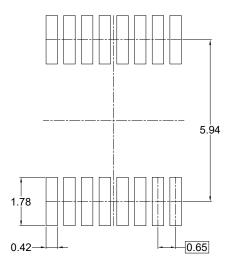
1. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 3.0ns.

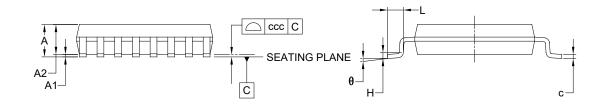
Page

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Original (OCTOBER 2023) to REV.A


Changed from product preview to production dataAll	

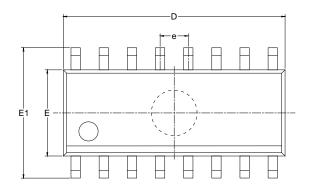

PACKAGE OUTLINE DIMENSIONS

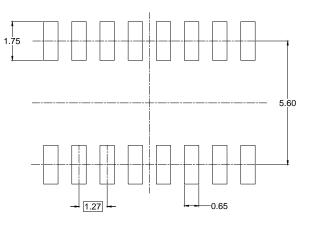
TSSOP-16

RECOMMENDED LAND PATTERN (Unit: mm)

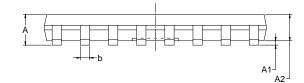
Or mark at	Dimensions In Millimeters						
Symbol	MIN	MOD	МАХ				
A	-	-	1.200				
A1	0.050	-	0.150				
A2	0.800	-	1.050				
b	0.190	-	0.300				
С	0.090	-	0.200				
D	4.860	-	5.100				
E	4.300	-	4.500				
E1	6.200	-	6.600				
е		0.650 BSC					
L	0.450	-	0.750				
Н	0.250 TYP						
θ	0°	-	8°				
ССС		0.100					

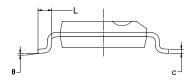
NOTES:


1. This drawing is subject to change without notice.


2. The dimensions do not include mold flashes, protrusions or gate burrs.

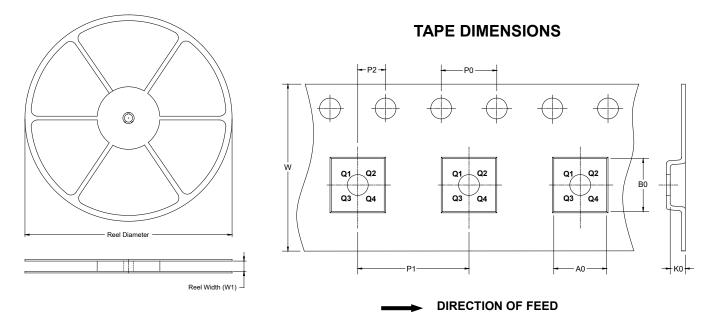
3. Reference JEDEC MO-153.




PACKAGE OUTLINE DIMENSIONS SOIC-16

RECOMMENDED LAND PATTERN (Unit: mm)

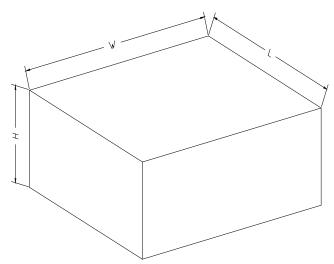
Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
с	0.170	0.250	0.006	0.010	
D	9.800	10.200	0.386	0.402	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27	BSC	0.050 BSC		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	


NOTES:

Body dimensions do not include mode flash or protrusion.
This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP-16	13″	12.4	6.80	5.40	1.50	4.0	8.0	2.0	12.0	Q1
SOIC-16	13″	16.4	6.50	10.30	2.10	4.0	8.0	2.0	16.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	DD0002

