

SGM11110M SP10T Switch with MIPI RFFE Interface

GENERAL DESCRIPTION

The SGM11110M is a single-pole/ten-throw (SP10T) antenna switch, which supports from 0.1GHz to 3GHz. The device features low insertion loss and high isolation, which make it suitable for high linearity receiving applications. It also has the advantage of high linearity performance. The SGM11110M is not subject to cellular interference and is applied to multi-mode and multi-band LTE mobile phones.

The SGM11110M has the ability to integrate SP10T RF switch and MIPI controller on silicon-on-insulator (SOI) process. Internal driver and decoder for switch control signals are offered by the controller, which makes it flexible in RF path band and routing selection.

No external DC blocking capacitors required on the RF paths as long as no external DC voltage is applied, which can save PCB area and cost.

The SGM11110M is available in a Green UTQFN-2.4× 2.4-20L package.

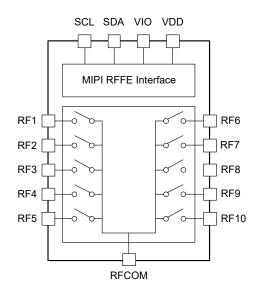
APPLICATIONS

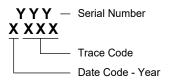
3G/4G Applications

FEATURES

- Supply Voltage Range: 2.4V to 4.8V
- Advanced Silicon-On-Insulator (SOI) Process
- Frequency Range: 0.1GHz to 3GHz
- Low Insertion Loss: 0.6dB (TYP) at 2.7GHz
- MIPI RFFE Interface Compatible
- No External DC Blocking Capacitors Required
- Available in a Green UTQFN-2.4×2.4-20L Package

BLOCK DIAGRAM




Figure 1. SGM11110M Block Diagram

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION	
SGM11110M	UTQFN-2.4×2.4-20L	-40°C to +85°C	SGM11110MYURC20G/TR	006 XXXX	Tape and Reel, 3000	

MARKING INFORMATION

NOTE: XXXX = Date Code and Trace Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

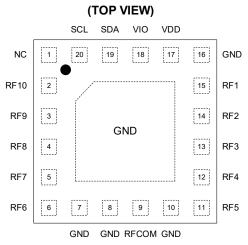
Supply Voltage, V _{DD} 5\	/
Supply Voltage for MIPI, V _{IO} 2\	V
SDA, SCL Control Voltage, V _{CTL} 2\	V
RF Input Power, P _{IN}	n
Junction Temperature+150°C	2
Storage Temperature Range55°C to +150°C	2
Lead Temperature (Soldering, 10s)+260°C	2
ESD Susceptibility	
HBM	V

RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range	40°C to +85°C
Operating Frequency Range	0.1GHz to 3GHz
Supply Voltage, V _{DD}	2.4V to 4.8V
Supply Voltage for MIPI. Vio	1.65V to 1.95V

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

UTQFN-2.4×2.4-20L

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	NC	No connection.
2	RF10	RF Port 10.
3	RF9	RF Port 9.
4	RF8	RF Port 8
5	RF7	RF Port 7.
6	RF6	RF Port 6.
7, 8, 10, 16	GND	Ground.
9	RFCOM	RF Common Port.
11	RF5	RF Port 5.
12	RF4	RF Port 4.
13	RF3	RF Port 3.
14	RF2	RF Port 2.
15	RF1	RF Port 1.
17	VDD	DC Power Supply.
18	VIO	Supply Voltage for MIPI.
19	SDA	RFFE Data Signal.
20	SCL	RFFE Clock Signal.
Exposed Pad	GND	Ground.

Register_0 TRUTH TABLE

Table 1. Register_0 Truth Table

04-4-	Mode	Register_0 Bits								
State	Wode	D7	D6	D5	D4	D3	D2	D1	D0	
1	Isolation	х	х	0	0	0	0	0	0	
2	RF1	х	х	х	0	0	0	1	0	
3	RF2	х	х	х	0	1	0	1	0	
4	RF3	х	х	х	0	1	1	1	0	
5	RF4	х	х	х	0	1	0	1	1	
6	RF5	х	х	х	0	0	0	0	1	
7	RF6	х	х	х	0	1	0	0	1	
8	RF7	х	х	х	0	0	1	1	0	
9	RF8	х	х	Х	0	0	1	0	0	
10	RF9	х	х	х	0	1	1	0	0	
11	RF10	х	х	х	0	1	0	0	0	

ELECTRICAL CHARACTERISTICS

 $(T_A = +25^{\circ}C, V_{DD} = 2.4V \text{ to } 4.8V, \text{ typical values are at } V_{DD} = 2.8V, P_{IN} = 0 \text{dBm}, 50\Omega, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC Characteristics					•	
Supply Voltage	V_{DD}		2.4	2.8	4.8	V
Supply Current	I _{DD}			32	70	μA
Supply Voltage for MIPI	V _{IO}		1.65	1.8	1.95	V
Supply Current for MIPI	I _{VIO}			4.8	10	μA
Combined Maltanea	V _{CTL_H}	High	0.8 × V _{IO}	V _{IO}	1.95	
Control Voltage	V _{CTL_L}	Low	0		0.45	V
Switching Time	t _{sw}	50% of control voltage to 90% of RF power		1	2	μs
Turn-On Time	t _{ON}	Time from $V_{DD} = 0V$ to part on and RF at 90%		5	10	μs
RF Characteristics						
	IL	f ₀ = 0.1GHz to 1.0GHz		0.43	0.81	
Insertion Loss (RFCOM to All RF Ports)		1 II I I I I I I I I I I I I I I I I I			0.53	0.93
(ru com to rur u r cho)		f ₀ = 2.0GHz to 2.7GHz		0.60	0.99	
		f ₀ = 0.1GHz to 1.0GHz	28	45		
Isolation (RFCOM to All RF Ports)	ISO	f ₀ = 1.0GHz to 2.0GHz	21	37		dB
(ru com to rur u r cho)		f ₀ = 2.0GHz to 2.7GHz	19	33		
		f ₀ = 0.1GHz to 1.0GHz		26		
Input Return Loss (RFCOM to All RF Ports)	RL	f ₀ = 1.0GHz to 2.0GHz		22		dB
,		f ₀ = 2.0GHz to 2.7GHz		15		1
0.1dB Compression Point (RFCOM to All RF Ports)	P _{0.1dB}	f ₀ = 0.1GHz to 3GHz		26		dBm

MIPI READ AND WRITE TIMING

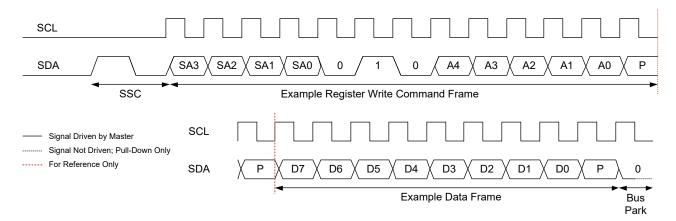


Figure 2. Register Write Command Timing Diagram

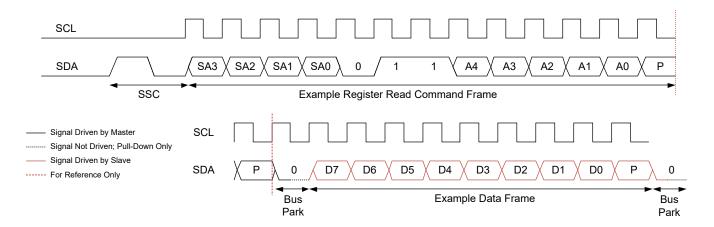


Figure 3. Register Read Command Timing Diagram

COMMAND SEQUENCE BIT DEFINITIONS

		Command Frame Bits					Bus	Extended Operation						
Туре	SSC	C[11:8]	C[7]	C[6:5]	C[4]	C[3:0]	Parity Bits	Park Cycle	Data Frame Bits	Parity Bits	Bus Park Cycle	Data Frame Bits	Parity Bits	Bus Park Cycle
Reg Write	Υ	SA[3:0]	0	10	A[4]	A[3:0]	Y	-	D[7:0]	Υ	Υ	-	-	-
Reg Read	Υ	SA[3:0]	0	11	A[4]	A[3:0]	Υ	Υ	D[7:0]	Υ	Υ	-	-	-
Reg0 Write	Υ	SA[3:0]	1	D[6:5]	D[4]	D[3:0]	Y	Υ	-	-	-	-	-	-

Legends:

SSC = Sequence Start Command

SA = Slave Address

A = Register Address

D = Data Bit

REGISTER MAPS

Register_0

Register Address: 0x00; R/W

Table 2. Register_0 Register Details

Bits	Bit Name	Description	Default	Туре	B/G	Trig
D[7:0]	MODE_CTRL	See Table 1 section.	00000000	R/W	No	0, 1, 2

PM_TRIG

Register Address: 0x1C; R/W and W Table 3. PM_TRIG Register Details

Bits	Bit Name		Description	Default	Туре	B/G	Trig
D[7]	PWR_MODE_1	0: Normal 1: Low power		0	R/W	Yes	No
D[6]	PWR_MODE_0	0: Active - Normal 1: Startup - All registers a	Normal - All registers are reset to the default			Yes	No
D[5]	TRIGGER_MASK_2	0: TRIGGER_2 enabled 1: TRIGGER_2 disabled	If any one of the three TRIGGER_MASK_x is set to logic '1', the corresponding trigger is disabled, in that case data written to a	0	R/W	No	No
D[4]	TRIGGER_MASK_1	0: TRIGGER_1 enabled 1: TRIGGER_1 disabled	register associated with the trigger goes directly to the destination register. Otherwise, if the TRIGGER_MASK_x is set to logic '0', incoming data is written to	0	R/W	No	No
D[3]	TRIGGER_MASK_0	0: TRIGGER_0 enabled 1: TRIGGER_0 disabled	the shadow register, and the destination register is unchanged until its corresponding trigger is asserted.	0	R/W	No	No
D[2]	TRIGGER_2	1: Load its associated des	estination registers unchanged tination registers with the data in the parallel d TRIGGER_MASK_2 is set to logic '0'	0	W	Yes	No
D[1]	TRIGGER_1	1: Load its associated des	Keep its associated destination registers unchanged Load its associated destination registers with the data in the parallel shadow register, provided TRIGGER MASK 1 is set to logic '0'			Yes	No
D[0]	TRIGGER_0	1: Load its associated des	estination registers unchanged tination registers with the data in the parallel d TRIGGER_MASK_0 is set to logic '0'	0	W	Yes	No

PRODUCT ID

Register Address: 0x1D; R

Table 4. PRODUCT_ID Register Details

Bits	Bit Name	Description	Default	Туре	B/G	Trig
D[7:0]	PRODUCT_ID	Product number.	00000010	R	No	No

MANUFACTURER_ID

Register Address: 0x1E; R

Table 5. MANUFACTURER_ID Register Details

Bits	Bit Name	Bit Name Description		Туре	B/G	Trig
D[7:0]	MANUFACTURER_ID[7:0]	Lower eight bits of Manufacturer ID. Read-only. Note that during USID programming, the write command sequence is executed on the register, but the value does not change.	01001010	R	No	No

SGM11110M

REGISTER MAPS (continued)

MAN_USID

Register Address: 0x1F; R and R/W Table 6. MAN_USID Register Details

Bits	Bit Name	Description	Default	Туре	B/G	Trig
D[7:6]	Reserved	Reserved.	00	R	No	No
D[5:4]	MANUFACTURER_ID[9:8]	Upper two bits of Manufacturer ID. Read-only. Note that during USID programming, the write command sequence is executed on the register, but the value does not change.	00	R	No	No
D[3:0]	USID	USID of the device.	1011	R/W	No	No

TYPICAL APPLICATION CIRCUIT

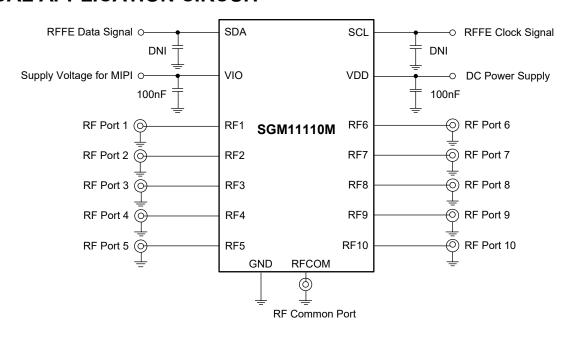


Figure 4. SGM11110M Typical Application Circuit

EVALUATION BOARD LAYOUT

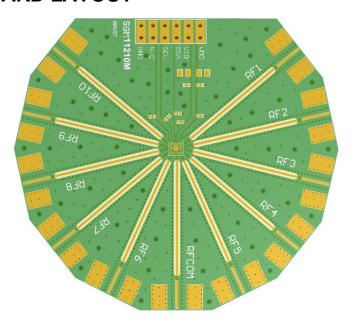
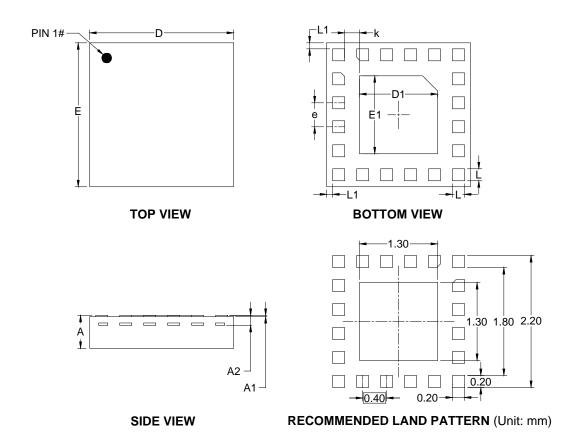


Figure 5. SGM11110M Evaluation Board Layout

SGM11110M

SP10T Switch with MIPI RFFE Interface

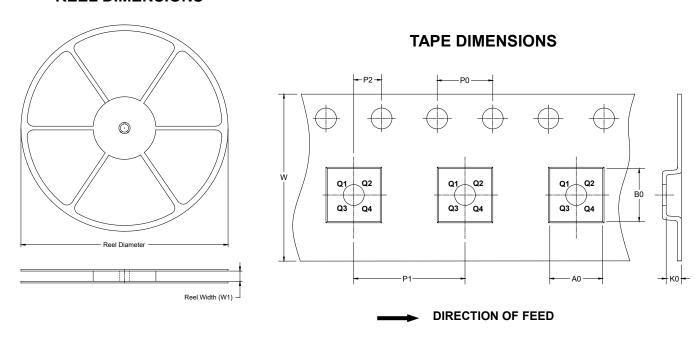

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes	from	Original	(DECEMBER	2022	to RFV A
Onlanges		Original	(DECEMBER	2022	, to IXE V .A

Page

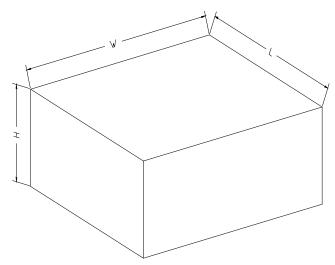
PACKAGE OUTLINE DIMENSIONS UTQFN-2.4×2.4-20L


Symbol	Dimensions In Millimeters						
	MIN	MOD	MAX				
Α	0.500	0.550	0.600				
A1	0.000	0.020 0.050					
A2	0.127 REF						
D	2.300	2.400	2.500				
E	2.300	2.400	2.500				
D1	1.200	1.300	1.400				
E1	1.200	1.300 1.400					
е	0.400 BSC						
k	0.250 REF						
L	0.150	0.200 0.250					
L1	0.100 REF						

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
UTQFN-2.4×2.4-20L	7"	9.5	2.65	2.65	0.75	4.0	4.0	2.0	8.0	Q2

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18