

## SGM8437-1 Current Feedback, Wide-Band High-Current Output Amplifier

## GENERAL DESCRIPTION

The SGM8437-1 is a current feedback, wide-band high-current output amplifier with high voltage, low noise and high slew rate performance. These features make SGM8437-1 very suitable for wide-band heavy load applications.

The SGM8437-1 can operate from 8V to 30V single supply or from ±4V to ±15V dual supplies. And it maintains wide bandwidth and high linearity over the whole full-scale range of power supply.

A disable control (DIS) pin is used to control the operation modes of the device. When DIS pin is high or floating, SGM8437-1 is in power-down mode. When DIS pin is low, SGM8437-1 is in full-power working mode.

The SGM8437-1 is available in a Green SOIC-8 (Exposed Pad) package. It operates over an ambient temperature range of -40 $^{\circ}$ C to +85 $^{\circ}$ C.

## **FEATURES**

- Current Feedback Amplifier
- Support Single or Dual Power Supplies:
   8V to 30V or ±4V to ±15V
- Supply Current: 9.5mA (TYP)
- Power-Down Current: 35µA (TYP)
- Low Input Voltage Noise Density: 10nV/√Hz
- High Slew Rate for Differential Signal: 800V/μs
- Stable at Gain ≥ 2
- Output Over-Voltage Protection and Voltage Clamping Protection
- Over-Temperature Protection
- Disable Control Pins for Low-Power Design
- -40°C to +85°C Operating Temperature Range
- Available in a Green SOIC-8 (Exposed Pad) Package

## **APPLICATIONS**

Test Equipment Amplifiers
Cable Drivers

#### TYPICAL APPLICATION

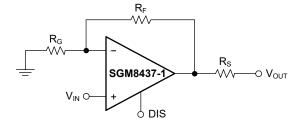



Figure 1. Typical Application Circuit

## PACKAGE/ORDERING INFORMATION

| MODEL     | PACKAGE<br>DESCRIPTION | SPECIFIED<br>TEMPERATURE<br>RANGE | ORDERING<br>NUMBER | PACKAGE<br>MARKING        | PACKING<br>OPTION   |
|-----------|------------------------|-----------------------------------|--------------------|---------------------------|---------------------|
| SCM9427 1 | SOIC-8                 | 40°C to 195°C                     | SGM8437-1YPS8G/TR  | SGM<br>84371YPS8<br>XXXXX | Tape and Reel, 4000 |
| SGM8437-1 | (Exposed Pad)          | -40°C to +85°C                    | SGM8437-1YPS8SG/TR | SGM<br>84371YPS8<br>XXXXX | Tape and Reel, 500  |

#### MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

| <u>)</u> | <u>(                                    </u> | <u> </u> |                  |
|----------|----------------------------------------------|----------|------------------|
|          |                                              |          | Vendor Code      |
|          | L                                            |          | Trace Code       |
|          |                                              |          | Date Code - Year |

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

#### **ABSOLUTE MAXIMUM RATINGS**

| Supply Voltage, +V <sub>S</sub> to -V <sub>S</sub> | 0.3V to 32V    |
|----------------------------------------------------|----------------|
| +V <sub>S</sub> Voltage to GND                     | 0.3V to 30V    |
| -V <sub>S</sub> Voltage to GND                     | 30V to 0.3V    |
| DIS Voltage to GND                                 | 0.3V to 5.5V   |
| Package Thermal Resistance                         |                |
| SOIC-8 (Exposed Pad), θ <sub>JA</sub>              | 39.3°C/W       |
| Junction Temperature                               | +150°C         |
| Storage Temperature Range                          | 65°C to +150°C |
| Lead Temperature (Soldering, 10s)                  | +260°C         |
| ESD Susceptibility (1)(2)                          |                |
| HBM                                                | ±4000V         |
| CDM                                                | ±1000V         |

#### NOTES:

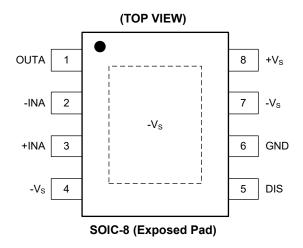
- 1. For human body model (HBM), all pins comply with ANSI/ESDA/JEDEC JS-001 specifications.
- 2. For charged device model (CDM), all pins comply with ANSI/ESDA/JEDEC JS-002 specifications.

#### RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range .....-40°C to +85°C

#### **OVERSTRESS CAUTION**

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


#### **ESD SENSITIVITY CAUTION**

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

#### DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

## **PIN CONFIGURATION**



## **PIN DESCRIPTION**

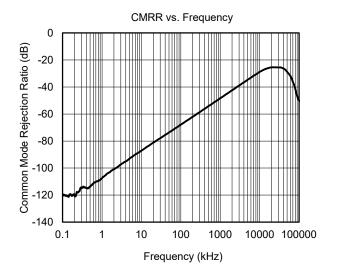
| PIN         | NAME            | FUNCTION                                                                                                                                                                                                                                                |
|-------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1           | OUTA            | Output of Amplifier A.                                                                                                                                                                                                                                  |
| 2           | -INA            | Inverting Input of Amplifier A.                                                                                                                                                                                                                         |
| 3           | +INA            | Non-Inverting Input of Amplifier A.                                                                                                                                                                                                                     |
| 4, 7        | -V <sub>S</sub> | Negative Power Supply Voltage. For single power supply application, -V <sub>S</sub> pin must be connected to external ground. For dual power supplies application, -V <sub>S</sub> pin must be connected to external -4V to -15V negative power supply. |
| 5           | DIS             | Disable Control Pin. The SGM8437-1 is in power-down (disabled) mode if the DIS pin is floating.                                                                                                                                                         |
| 6           | GND             | Ground. The GND pin must be connected with external ground.                                                                                                                                                                                             |
| 8           | +V <sub>S</sub> | Positive Power Supply for Amplifier. (8V to 30V for single power supply and +4V to +15V for dual power supplies.)                                                                                                                                       |
| Exposed Pad | -V <sub>S</sub> | Must be connected to -V <sub>S</sub> for optimal thermal performance. Connecting to other pins is not allowed.                                                                                                                                          |

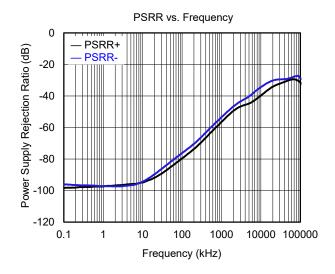
## **ELECTRICAL CHARACTERISTICS**

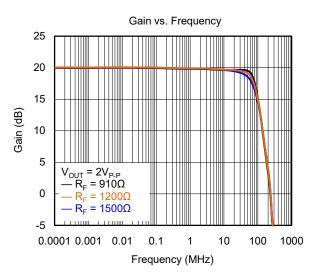
 $(V_S = 8V \text{ to } 30V, V_{CM} = 1/2V_S, R_F = 1.2k\Omega, R_L = 50\Omega \text{ terminated to } 1/2V_S, A_V = 10, \text{Full} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ typical values are at } T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$ 

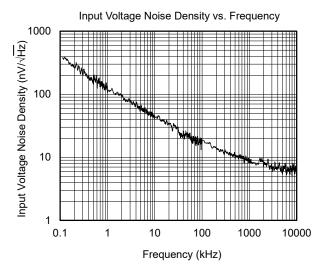
| PARAMETER                                    | SYMBOL                       | CONDITIONS                                              | TEMP  | MIN                    | TYP  | MAX                    | UNITS |  |
|----------------------------------------------|------------------------------|---------------------------------------------------------|-------|------------------------|------|------------------------|-------|--|
| Supply Characteristics                       |                              |                                                         |       | •                      |      | •                      |       |  |
| Operating Voltage Range                      | Vs                           |                                                         | Full  | 8                      |      | 30                     | V     |  |
| D ::: 0 1 0 1                                | .1 (5 11 5                   | All 1 1 10V                                             | +25°C |                        | 9.5  | 12                     |       |  |
| Positive Supply Current                      | +I <sub>S</sub> (Full-Power) | All outputs at 0V                                       | Full  |                        |      | 13                     | mA    |  |
|                                              | . (5 !  5)                   |                                                         | +25°C | -12                    | -9.5 |                        | mA    |  |
| Negative Supply Current                      | -I <sub>S</sub> (Full-Power) | All outputs at 0V                                       | Full  | -13                    |      |                        |       |  |
| - · · · · · · · · · · · · · · · · · · ·      | +I <sub>s</sub> (Power-Down) | +25°C                                                   |       | 35                     | 45   |                        |       |  |
| Positive Supply Current                      |                              |                                                         | Full  |                        |      | 55                     | μA    |  |
|                                              | 1.65                         | All outputs at 0V, $V_{DIS} = 3.3V$ , $V_{S} =$         | +25°C | -35                    | -26  |                        |       |  |
| Negative Supply Current                      | -I <sub>S</sub> (Power-Down) | 28V                                                     | Full  | -45                    |      |                        | μA    |  |
|                                              | 5055                         |                                                         | +25°C | 89                     | 96   |                        |       |  |
| 5 0 15: " 5"                                 | PSRR+                        | $V_{\rm S} = 8V \text{ to } 30V, V_{\rm CM} = 4V$       | Full  | 80                     |      |                        |       |  |
| Power Supply Rejection Ratio                 |                              |                                                         | +25°C | 88                     | 96   |                        | dB    |  |
|                                              | PSRR-                        | $V_S = 8V \text{ to } 30V, V_{CM} = 4V \text{ to } 26V$ | Full  | 80                     |      |                        |       |  |
| Input Characteristics                        | ı                            |                                                         |       |                        |      | II.                    | ı     |  |
|                                              |                              |                                                         | +25°C |                        | 6    | 13                     | mV    |  |
| Input Offset Voltage                         | V <sub>os</sub>              | I <sub>OUT</sub> = 0mA                                  | Full  |                        |      | 20                     |       |  |
| Input Offset Voltage Drift                   | ΔV <sub>OS</sub> /ΔΤ         |                                                         | Full  |                        | 0.1  |                        | mV/°C |  |
|                                              |                              |                                                         | +25°C |                        | 19   | 36                     |       |  |
| Inverting Input Bias Current                 | -I <sub>B</sub>              |                                                         | Full  |                        |      | 47                     | μA    |  |
| Inverting Input Bias Current Drift           | ΔΙ <sub>Β-</sub> /ΔΤ         |                                                         | Full  |                        | 0.2  |                        | μΑ/°C |  |
|                                              |                              |                                                         | +25°C |                        | 12   | 45                     |       |  |
| Non-Inverting Input Bias Current             | +I <sub>B</sub>              |                                                         | Full  |                        |      | 300                    | nA    |  |
| Non-Inverting Input Bias Current Drift       | ΔI <sub>B+</sub> /ΔΤ         |                                                         | Full  |                        | 0.2  |                        | nA/°C |  |
| Input Common Mode Voltage Range              | V <sub>CM</sub>              |                                                         | Full  | (-V <sub>S</sub> ) + 4 |      | (+V <sub>S</sub> ) - 4 | V     |  |
|                                              |                              |                                                         | +25°C | 75                     | 82   |                        |       |  |
|                                              |                              | $V_S = 12V, V_{CM} = 4V \text{ to } 8V$                 | Full  | 65                     |      |                        |       |  |
| Common Mode Rejection Ratio                  | CMRR                         |                                                         | +25°C | 84                     | 90   |                        | dB    |  |
|                                              |                              | $V_S = 30V, V_{CM} = 4V \text{ to } 26V$                | Full  | 75                     |      |                        |       |  |
| Transimpedance (1)                           | R <sub>OL</sub>              |                                                         | Full  |                        | 18   |                        | МΩ    |  |
| Input High Voltage                           | V <sub>IH</sub>              | DIS input                                               | Full  | 2                      |      |                        | V     |  |
| Input Low Voltage                            | V <sub>IL</sub>              | DIS input                                               | Full  |                        |      | 0.8                    | V     |  |
|                                              | I <sub>IH</sub>              | DIS input, V <sub>DIS</sub> = 3.3V                      | Full  |                        | -0.7 | 4                      | _     |  |
| Input Pin Current                            | I <sub>IL</sub>              | DIS input, V <sub>DIS</sub> = 0V                        | Full  | -4                     | -2   |                        | μA    |  |
| Output Characteristics                       | 1                            | ı                                                       | 1     | 1                      |      | ı                      | l .   |  |
|                                              |                              | $V_{S} = 30V, R_{L} = 50\Omega$                         | +25°C |                        | 2.5  | 3                      |       |  |
| Output Voltage Swing from Either Supply Rail | V <sub>OUT</sub>             | $V_{S} = 30V, R_{L} = 100\Omega$                        | +25°C |                        | 2    |                        | V     |  |
| оирріу Паіі                                  |                              | V <sub>S</sub> = 30V, R <sub>L</sub> = open             | +25°C |                        | 1.5  |                        |       |  |
| Output Current                               | Іоит                         | $V_{S} = 30V, R_{L} = 20\Omega$                         | +25°C |                        | ±0.5 |                        | Α     |  |

NOTE: 1. Specified by design.


## **ELECTRICAL CHARACTERISTICS (continued)**


 $(V_S = 8V \text{ to } 30V, V_{CM} = 1/2V_S, R_F = 1.2k\Omega, R_L = 50\Omega \text{ terminated to } 1/2V_S, A_V = 10, \text{ Full } = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ typical values are at } T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$ 


| PARAMETER                              | SYMBOL           | CONDITIONS                                                  | TEMP  | MIN | TYP | MAX | UNITS              |
|----------------------------------------|------------------|-------------------------------------------------------------|-------|-----|-----|-----|--------------------|
| Dynamic Performance                    |                  | •                                                           | •     |     |     |     |                    |
| -3dB Small-Signal Bandwidth            | BW               | V <sub>S</sub> = 30V, V <sub>OUT</sub> = 2V <sub>P-P</sub>  | +25°C |     | 75  |     | MHz                |
| -3dB Large-Signal Bandwidth            | BW               | V <sub>S</sub> = 30V, V <sub>OUT</sub> = 10V <sub>P-P</sub> | +25°C |     | 35  |     | MHz                |
|                                        |                  | $V_S = 30V, f_C = 1MHz, V_{OUT} = 10V_{P-P}$                | +25°C |     | -68 |     |                    |
| 2nd Harmonic Distortion                | HD2              | $V_S = 30V$ , $f_C = 2MHz$ , $V_{OUT} = 10V_{P-P}$          | +25°C |     | -65 |     | dBc                |
|                                        | ΠD2              | $V_S = 30V$ , $f_C = 3MHz$ , $V_{OUT} = 10V_{P-P}$          | +25°C |     | -59 |     | ubc                |
|                                        |                  | $V_S = 30V$ , $f_C = 10MHz$ , $V_{OUT} = 10V_{P-P}$         | +25°C |     | -39 |     |                    |
|                                        |                  | $V_S = 30V, f_C = 1MHz, V_{OUT} = 10V_{P-P}$                | +25°C |     | -72 |     |                    |
| 3rd Harmonic Distortion                | HD3              | $V_S = 30V, f_C = 2MHz, V_{OUT} = 10V_{P-P}$                | +25°C |     | -65 | dBc |                    |
|                                        | HD3              | $V_S = 30V, f_C = 3MHz, V_{OUT} = 10V_{P-P}$                | +25°C |     | -61 |     | abc                |
|                                        |                  | $V_S = 30V$ , $f_C = 10MHz$ , $V_{OUT} = 10V_{P-P}$         | +25°C |     | -52 |     |                    |
| Slew Rate (Differential Signal)        | SR               | V <sub>S</sub> = 30V, V <sub>OUT</sub> = 20V <sub>P-P</sub> | +25°C |     | 800 |     | V/µs               |
| Turne On Off Times                     | t <sub>EN</sub>  | From disable to enable time                                 | +25°C |     | 10  |     | μs                 |
| Turn-On/Off Time                       | t <sub>DIS</sub> | From enable to disable time                                 | +25°C |     | 160 |     | ns                 |
| Noise                                  |                  | •                                                           |       |     |     |     |                    |
| Input Voltage Noise Density            | e <sub>n</sub>   | f = 1MHz                                                    | +25°C |     | 10  |     | nV/√ <del>Hz</del> |
| Over-Temperature Protection            |                  | •                                                           | •     |     |     |     | •                  |
| Over-Temperature Protection            |                  |                                                             |       |     | 150 |     | °C                 |
| Over-Temperature Protection Hysteresis |                  |                                                             |       |     | 5   |     | °C                 |


## TYPICAL PERFORMANCE CHARACTERISTICS

At  $T_A$  = +25°C,  $V_S$  = ±15V, unless otherwise noted.









## **FUNCTIONAL BLOCK DIAGRAM**

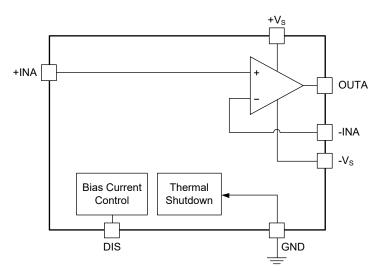



Figure 2. Block Diagram

## APPLICATION INFORMATION

Figure 1 shows a typical application circuit for SGM8437-1.

#### **Power Control Function**

The SGM8437-1 supports power control operation. Its supply current is controlled by the digital inputs DIS. DIS pin is pulled high internally. The device immediately enters power-down mode when DIS pin is floating.

The truth table of the SGM8437-1 is shown in Table 1.

Table 1. Working Modes of SGM8437-1

| DIS Pin  | Operation                |
|----------|--------------------------|
| 0        | Full-Power Working Mode. |
| 1        | Power-Down Mode.         |
| Floating | Power-Down Mode.         |

#### **Breakdown Supply Voltage**

If the amplifier is being used in an application that is part of a regulated power grid, the ability to withstand a supply voltage that is higher than the recommended voltage is important to ensure robustness.

In order to estimate the margin beyond the maximum supply voltage, several randomly selected samples are tested to show the robustness of SGM8437-1.

Figure 3 shows the configuration of this test. The SGM8437-1 is tested by manually increasing the supply voltage in 1V steps while simultaneously recording the supply current. This operation is performed from 28V until internal device is breakdown. Three samples are subjected to this test, and one of their results is shown in Figure 4.

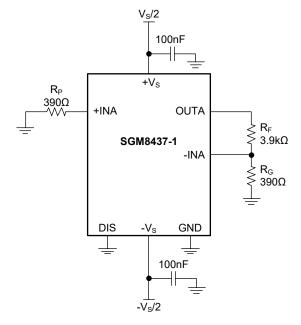



Figure 3. Breakdown Supply Voltage Test Configuration

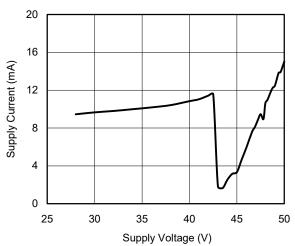
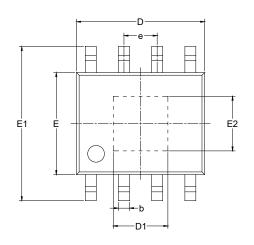
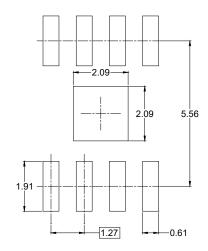


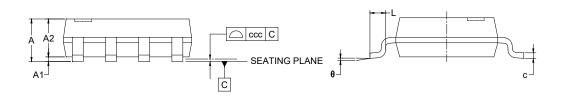

Figure 4. Supply Current vs. Supply Voltage

# **Current Feedback, Wide-Band High-Current Output Amplifier**


## SGM8437-1


## **REVISION HISTORY**

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.



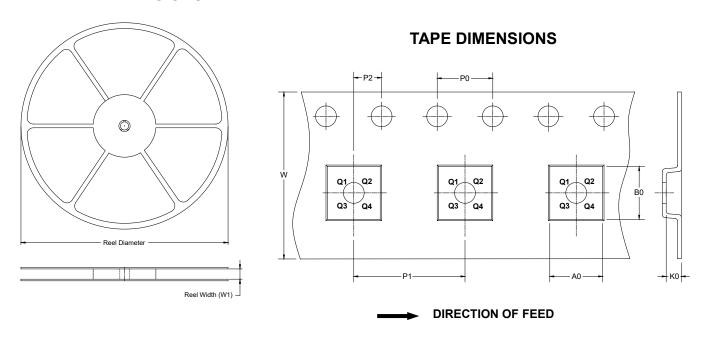

## **PACKAGE OUTLINE DIMENSIONS SOIC-8 (Exposed Pad)**





#### RECOMMENDED LAND PATTERN (Unit: mm)



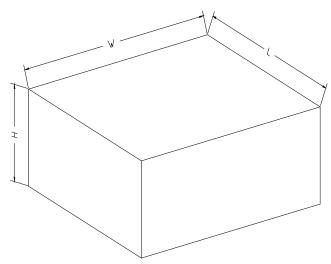

| Symbol     |       | Dimensions<br>In Millimeters |       |  |  |  |  |
|------------|-------|------------------------------|-------|--|--|--|--|
| <b>- 7</b> | MIN   | NOM                          | MAX   |  |  |  |  |
| Α          |       |                              | 1.700 |  |  |  |  |
| A1         | 0.000 | -                            | 0.150 |  |  |  |  |
| A2         | 1.250 | -                            | 1.650 |  |  |  |  |
| b          | 0.330 | -                            | 0.510 |  |  |  |  |
| С          | 0.170 | -                            | 0.250 |  |  |  |  |
| D          | 4.700 | -                            | 5.100 |  |  |  |  |
| D1         | 1.890 | -                            | 2.290 |  |  |  |  |
| E          | 3.800 | -                            | 4.000 |  |  |  |  |
| E1         | 5.800 | -                            | 6.200 |  |  |  |  |
| E2         | 1.890 | -                            | 2.290 |  |  |  |  |
| е          |       | 1.27 BSC                     |       |  |  |  |  |
| L          | 0.400 | -                            | 1.270 |  |  |  |  |
| θ          | 0°    | -                            | 8°    |  |  |  |  |
| ccc        |       | 0.100                        |       |  |  |  |  |

- This drawing is subject to change without notice.
   The dimensions do not include mold flashes, protrusions or gate burrs.
- 3. Reference JEDEC MS-012.



## TAPE AND REEL INFORMATION

## **REEL DIMENSIONS**




NOTE: The picture is only for reference. Please make the object as the standard.

## **KEY PARAMETER LIST OF TAPE AND REEL**

| Package Type            | Reel<br>Diameter | Reel Width<br>W1<br>(mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P0<br>(mm) | P1<br>(mm) | P2<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-------------------------|------------------|--------------------------|------------|------------|------------|------------|------------|------------|-----------|------------------|
| SOIC-8<br>(Exposed Pad) | 13"              | 12.4                     | 6.40       | 5.40       | 2.10       | 4.0        | 8.0        | 2.0        | 12.0      | Q1               |

## **CARTON BOX DIMENSIONS**



NOTE: The picture is only for reference. Please make the object as the standard.

## **KEY PARAMETER LIST OF CARTON BOX**

| Reel Type | Length<br>(mm) |     |     | Pizza/Carton |        |
|-----------|----------------|-----|-----|--------------|--------|
| 13″       | 386            | 280 | 370 | 5            | DD0002 |