

SGM8473 Rail-to-Rail Output, High Input Impedance, Low Power, Low Noise Difference Amplifier

GENERAL DESCRIPTION

The SGM8473 series is a high accuracy, high voltage, low power, low noise and high input impedance difference amplifier, which is designed to offer fixed gain options of 0.2V/V and 0.6V/V by using integrated resistors. The device works well in battery-powered applications due to the low power consumption of 1.3mA typical quiescent current.

The SGM8473 provides 70ppm (MAX) non-linearity. SGM8473A1 offers 1.5mV (MAX) low input offset voltage and SGM8473A3 offers 1.2mV (MAX) low input offset voltage. The device also features low noise, low bias current and low power. The combination of these characteristics makes it a good choice for applications requiring excellent DC performance.

The SGM8473A1 offers 120nV/ $\sqrt{\text{Hz}}$ low input voltage noise, 300fA/ $\sqrt{\text{Hz}}$ input current noise at 1kHz, and 9µV_{P-P} in the 0.1Hz to 10Hz band. The SGM8473A3 offers 80nV/ $\sqrt{\text{Hz}}$ low input voltage noise, 300fA/ $\sqrt{\text{Hz}}$ input current noise at 1kHz, and 6µV_{P-P} in the 0.1Hz to 10Hz band. They are suitable for pre-amplifier applications. The 10µs settling time to 0.1% makes SGM8473 appropriate for multiplexed applications.

The SGM8473 series is available in a Green SOIC-8 package. It is specified over the extended -40° C to $+125^{\circ}$ C temperature range.

TYPICAL APPLICATION

FEATURES

- Gain Options:
 - SGM8473A1 Gain: 0.2V/V
 - SGM8473A3 Gain: 0.6V/V
- Integrated Resistors
- High Input Impedance
- Input Offset Voltage:
 - + SGM8473A1: 1.5mV (MAX)
 - SGM8473A3: 1.2mV (MAX)
- Input Bias Current: 15nA (TYP)
- Common Mode Rejection Ratio: 72dB (TYP)
- Input Voltage Noise:
 - ◆ SGM8473A1: 120nV/√Hz at 1kHz
 - ◆ SGM8473A3: 80nV/√Hz at 1kHz
- 0.1Hz to 10Hz Voltage Noise:
 - ◆ SGM8473A1: 9µV_{P-P}
 - ◆ SGM8473A3: 6µV_{P-P}
- Bandwidth: 1.3MHz
- Settling Time to 0.1%: 10µs
- Rail-to-Rail Output
- Support Single or Dual Power Supplies: 4.6V to 36V or ±2.3V to ±18V
- Low Power Supply Current: 1.3mA (TYP)
- -40°C to +125°C Operating Temperature Range
- Available in a Green SOIC-8 Package

APPLICATIONS

Industrial System PLC

Figure 1. Focus Application – ADC Driver

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM8473A1 (Gain = 0.2V/V)	SOIC-8	-40°C to +125°C	SGM8473A1XS8G/TR	SGM 8473A1XS8 XXXXX	Tape and Reel, 4000
SGM8473A3 (Gain = 0.6V/V)	SOIC-8	-40°C to +125°C	SGM8473A3XS8G/TR	SGM 8473A3XS8 XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

Vendor Code
Trace Code

Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, +V _S to -V _S	40V
Input Common Mode Voltage	±Vs
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility ^{(1) (2)}	
HBM	±7000V
CDM	±1000V

NOTES:

1. For human body model (HBM), all pins comply with ANSI/ESDA/JEDEC JS-001 specifications.

2. For charged device model (CDM), all pins comply with ANSI/ESDA/JEDEC JS-002 specifications.

RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range-40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTION

PIN	NAME	FUNCTION
1, 8	NC	Not Connected.
2	IN-	High Impedance Inverting Input.
3	IN+	High Impedance Non-Inverting Input.
4	-Vs	Negative Power Supply.
5	REF	Voltage Reference Pin. A voltage source with low impedance can be placed to supply this terminal in order to shift the output level.
6	OUT	Output.
7	+V _S	Positive Power Supply.

Rail-to-Rail Output, Low Power, Low Noise, High Input Impedance Difference Amplifier

ELECTRICAL CHARACTERISTICS

 $(V_S = \pm 15V, R_L = 2k\Omega, Full = -40^{\circ}C$ to +125°C, typical values are at $T_A = +25^{\circ}C$, unless otherwise noted.)

PAR	AMETER	SYMBOL	CONDITIONS		TEMP	MIN	TYP	MAX	UNITS
Gain			·		•				
Cain		0	SGM8473A1				0.2		N/N/
Gain		G	SGM8473A3				0.6		V/V
				0 - 0 0 0 0	+25°C		0.01	0.075	0/
Gain Error		GE	$v_{IN} = -10V to +10V$	G = 0.2, 0.6	Full			0.1	%
Gain Tempera	ature Coefficient			G = 0.2, 0.6	Full		3		ppm/°C
Non Lincority				0 - 0 2 0 6	+25°C		10	70	2000
Non-Lineanty			V _{IN} 10V to +10V	G – 0.2, 0.0	Full			100	ррп
Voltage Offse	et (Total RTI Error =	Voso/G)							
				0 - 0 2	+25°C		400	1500	
Innut Offert V	altana	N	$\lambda = 15 \lambda (to 145) \lambda$	G = 0.2	Full			2000	
input Oliset v	onage	VOSI	$V_{\rm S} = \pm 5V$ to $\pm 15V$		+25°C		200	1200	μν
				G – 0.6	Full			1600	
Input Offset Voltage Drift		$\Delta V_{OSI} / \Delta T$			Full		0.2		µV/°C
Offset Referred to the Input		DODD	$1/2 = \pm 2.2 / 10 \pm 10 / 10$	0-02.06	+25°C	108	120		dD
vs. Supply		PSKK	V _S - ±2.3V 10 ±16V	G – 0.2, 0.0	Full	105			ав
Input Curren	t								
In such Direct Original And					+25°C		15	28	54
Input bias Cu	nem	IB			Full			45	n A
Average Temp of Input Bias	perature Coefficient Current	$\Delta I_{B} / \Delta T$			Full		0.15		nA/°C
Input Offset C	urrent	loc			+25°C		5	15	nA
	- diront	-05			Full			20	
Average Temp of Input Offse	perature Coefficient t Current	$\Delta I_{OS} / \Delta T$			Full		0.05		nA/°C
Input			-						
Input	Differential	Z _{DIFF}			+25°C		10 4		GO II nF
Impedance	Common Mode	Z _{CM}			+25°C		10 4		011 [] []
Input Voltage Range			$V_s = \pm 2.3V$ to $\pm 18V$		Full	(-V _s) + 1.9		(+V _s) - 1.2	V
Common Mod	le Rejection Ratio	CMRR	$V_{CM} = (-V_S) + 1.9V$ to $(+V_S)$	G = 02.06	+25°C	60	72		dB
with 1kΩ Sou	rce Imbalance	OMINI	- 1.2V	0 - 0.2, 0.0	Full	57			
Reference In	put								
Reference Inp	out Resistance	R _{REF}			+25°C		18		kΩ
Reference Inr	out Current	loce	$V_{\rm INL} = V_{\rm INL} = 0V V_{\rm DEE} = 0V$		+25°C		40	60	μA
Reference Input Current		$v_{\rm REF} = v_{\rm IN+} - v_{\rm IN-} - 0v, v_{\rm REF} - 0v$			Full			70	μΑ

Rail-to-Rail Output, Low Power, Low Noise, **High Input Impedance Difference Amplifier**

ELECTRICAL CHARACTERISTICS (continued) (V_S = $\pm 15V$, R_L = $2k\Omega$, Full = -40° C to $+125^{\circ}$ C, typical values are at T_A = $+25^{\circ}$ C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		TEMP	MIN	TYP	МАХ	UNITS
Output Characteristics								-
	V	1/-10/	1/-+10/			310	450	
Output Voltage Swing	∨он	$V_{\rm S} = \pm 18V$		Full			600	m\/
Output voltage Swing	V	$1/ - \pm 18/$		+25°C		150	220	IIIV
	VOL	V _S - 110V		Full			300	
Short Circuit Current	1	$1/_{2} = \pm 2.31/_{10} \pm 1.01/_{10} =$	500 to $V_{\rm c}/2$	+25°C	19	24		m۸
Short-Circuit Current	ISC	$v_{\rm S} = \pm 2.3 V$ to $\pm 18 V$, $R_{\rm L} = 50\Omega$ to $V_{\rm S}/2$		Full	14			mA
Power Supply								
Quieseent Current		$V_{\rm S}$ = ±2.3V to ±18V, I _{OUT} = 0A		+25°C		1.3	1.7	mA
Quescent Current	IQ			Full			2.2	
Dynamic Response								
Small-Signal -3dB Bandwidth	BW		G = 0.2, 0.6	+25°C		1300		kHz
Slow Rate	SR	V _{OUT} = 1V _{P-P} Step	G = 0.2	+25°C		0.3		V/µs
Siew Nale			G = 0.6	+25°C		0.7		
Settling Time to 0.1%	t _s	V _{OUT} = 2V _{P-P} Step	G = 0.2, 0.6	+25°C		10		μs
Noise								
Input Voltago Noiso Donsity	0	£ _ 4141 -	G = 0.2	+25°C		120		nV/√Hz
Input voltage Noise Density	en		G = 0.6	+25°C		80		
0 1Hz to 10Hz Voltago Noigo DTI			G = 0.2	+25°C		9		
0. THE TO TOHE VOILage NOISE, KIT		G = 0.6		+25°C		6		μv _{P-P}
Input Current Noise Density, RTI	i _n	f = 1kHz	f = 1kHz			300		fA/√Hz
0.1Hz to 10Hz Current Noise, RTI		f = 0.1Hz to 10Hz	f = 0.1Hz to 10Hz			15		pA _{P-P}

TYPICAL PERFORMANCE CHARACTERISTICS

At T_A = +25°C, V_S = ±15V, unless otherwise noted.

SG Micro Corp

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At T_A = +25°C, V_S = ±15V, unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At T_A = +25°C, V_S = ±15V, unless otherwise noted.

APPLICATION INFORMATION

Typical Circuit

The typical application circuit of SGM8473 is shown in Figure 2:

Figure 2. Typical Application Circuit

RF Interference

One of the characteristics of difference amplifier is rectifying the small signal which is out of the band. This kind of disturbance can be described as the small biased voltage. All the high frequency components can be filtered by the R-C network, which is placed in the input position of SGM8473, as shown in Figure 3. The following equation shows the equation of filtering frequency for the differential and common mode part of the input signal.

FilterFreq_{DIFF} =
$$\frac{1}{2\pi R(2C_{D} + C_{C})}$$

FilterFreq_{CM} = $\frac{1}{2\pi RC_{C}}$

 $C_D \ge 10C_C$ is required in the above equation.

The capacitor C_D influences the quality of the differential signal, while C_C influences the quality of the common mode signal. The common mode rejection ratio would be reduced if the R × C_C is mismatched. To reduce this negative influence and obtain a good CMRR, it is recommended that the capacitance of C_D should be 10 times larger than C_C . To conclude, the larger the ratio of C_D : C_C is, the less negative influence on the circuit.

Figure 3. Using Input Low-Pass Filter to Reduce the Interference of RF

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (FEBRUARY 2025) to REV.A	Page
Changed from product preview to production data	All

PACKAGE OUTLINE DIMENSIONS SOIC-8

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimer In Milli	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27	BSC	0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

NOTES: 1. Body dimensions do not include mode flash or protrusion.

2. This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-8	13″	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton]_
13″	386	280	370	5	

