

74LVTN16374 3.3V, 16-Bit D-Type Edge-Triggered Flip-Flops with 3-State Outputs

GENERAL DESCRIPTION

The 74LVTN16374 is high performance product designed for V_{CC} operation at 3.3V. The device is 16-bit edge-triggered D-type flip-flops with non-inverting 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. It is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers and working registers.

The device can be used as two 8-bit flip-flops or one 16-bit flip-flop. On the positive transition of the clock (nCP) input, the nQn outputs of the flip-flop take on the logic levels set up at the nDn inputs.

An output enable $(n\overline{OE})$ input can be used to place the 8 outputs in either a normal logic state (high or low logic levels) or a high-impedance state.

 $n\overline{OE}$ does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

FEATURES

- 16-Bit Edge-Triggered Flip-Flop
- 3-State Buffers
- Output Capability: +64mA/-32mA
- TTL Input and Output Switching Levels
- Input and Output Interface Capability to Systems at 5V Supply
- Live Insertion and Extraction Permitted
- Power-Up Reset
- Power-Up 3-State
- No Bus Current Loading When Output is Tied to 5V Bus
- -40°C to +125°C Operating Temperature Range
- Available in a Green TSSOP-48 Package

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
74LVTN16374	TSSOP-48	-40°C to +125°C	74LVTN16374XTS48G/TR	74LVTN16374 XTS48 XXXXX	Tape and Reel, 2500

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

<u>XXXXX</u>

- Vendor Code
 - ——— Trace Code ——— Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Supply Voltage, V _{CC}	0.5V to 4.6V
Input Voltage, VI ⁽²⁾	0.5V to 7V
Output Voltage, Vo ⁽²⁾	
Output in 3-State or High-State	0.5V to 7V
Input Clamping Current, I _{IK} (V _I < 0V)	50mA
Output Clamping Current, I _{OK} (V _O < 0V)	50mA
Output Current, I _O	
Output in High-State	64mA
Output in Low-State	128mA
Supply Current, I _{CC}	128mA
Ground Current, I _{GND}	
Junction Temperature ⁽³⁾	
Storage Temperature Range65°	C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	7000V
CDM	1000V

RECOMMENDED OPERATING CONDITIONS

Supply Voltage, V _{CC}	2.7V to 3.6V
Input Voltage, V _I	0V to 5.5V
High-Level Output Current, IOH	32mA
Low-Level Output Current, IoL	64mA
Input Transition Rise and Fall Rate, $\Delta t / \Delta V$	
	10ns/V (MAX)
Operating Temperature Range	40℃ to +125℃

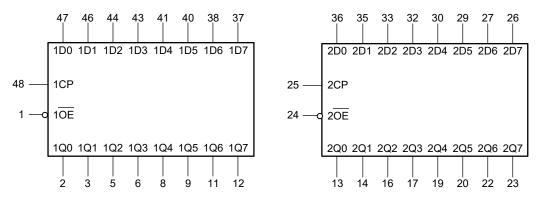
OVERSTRESS CAUTION

1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

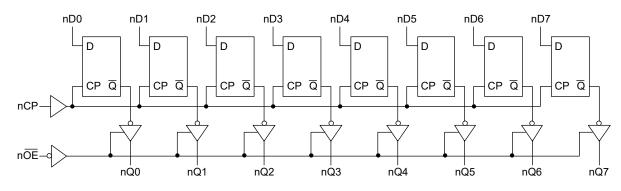
2. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER


SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	со	NTROL INF	TUY	INTERNAL	OUTPUT
OF ERATING MODE	nOE	nCP	nDn	REGISTER	nQn
Lood and Dood Degister	L	1	I	L	L
Load and Read Register	L	1	h	н	Н
Hold	L	NC	X	NC	NC
Dischla Qutnuta	Н	NC	X	NC	Z
Disable Outputs	Н	1	nDn	nDn	Z

H = High Voltage Level

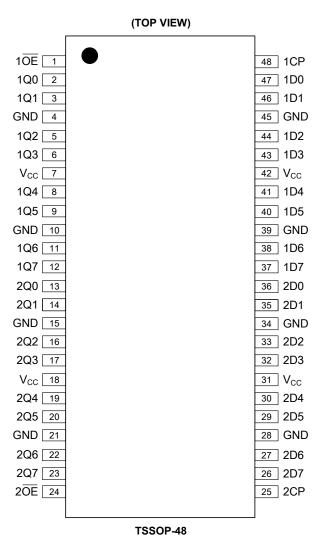
L = Low Voltage Level

 \uparrow = Low-to-High Clock Transition

h = High Voltage Level One Set-Up Time Prior to the Low-to-High Clock Transition

I = Low Voltage Level One Set-Up Time Prior to Low-to-High Clock Transition

Z = High-Impedance State


NC = No Change

X = Don't Care

3.3V, 16-Bit D-Type Edge-Triggered Flip-Flops with 3-State Outputs

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
47, 46, 44, 43, 41, 40, 38, 37	1D0, 1D1, 1D2, 1D3, 1D4, 1D5, 1D6, 1D7	Data Inputs.
36, 35, 33, 32, 30, 29, 27, 26	2D0, 2D1, 2D2, 2D3, 2D4, 2D5, 2D6, 2D7	Data Inputs.
1, 24	10E, 20E	Output Enable Inputs (Active Low).
48, 25	1CP, 2CP	Clock Inputs.
2, 3, 5, 6, 8, 9, 11, 12	1Q0, 1Q1, 1Q2, 1Q3, 1Q4, 1Q5, 1Q6, 1Q7	Data Outputs.
13, 14, 16, 17, 19, 20, 22, 23	2Q0, 2Q1, 2Q2, 2Q3, 2Q4, 2Q5, 2Q6, 2Q7	Data Outputs.
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground.
7, 18, 31, 42	V _{cc}	Supply Voltage.

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at V_{CC} = 3.3V and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDI	TEMP	MIN	TYP	MAX	UNITS	
Input Clamping Voltage	VIK	V _{CC} = 2.7V, I _{IK} = -18mA		Full	-1.2	-0.78		V
High-Level Input Voltage	V _{IH}	V _{CC} = 2.7V to 3.6V		Full	2			V
Low-Level Input Voltage	VIL	V _{CC} = 2.7V to 3.6V		Full			0.8	V
		I _{OH} = -100µA, V _{CC} = 2.7V	to 3.6V	Full	V _{CC} - 0.05	V _{CC} - 0.001		
High-Level Output Voltage	V _{он}	I _{он} = -8mA, V _{cc} = 2.7V		Full	2.45	2.6		V
		I _{OH} = -32mA, V _{CC} = 3.0V		Full	2.1	2.65		
		$y_{1} = 0.7y_{1}$	I _{OL} = 100μA	Full		0.001	0.05	
		$V_{CC} = 2.7V$	I _{OL} = 24mA	Full		0.15	0.28	
Low-Level Output Voltage	V _{OL}		I _{OL} = 16mA	Full		0.1	0.18	V
		V _{CC} = 3.0V	I _{OL} = 32mA	Full		0.2	0.36	
			I _{OL} = 64mA	Full		0.4	0.55	1
Power-Up Low-Level Output Voltage ⁽¹⁾	$V_{OL_{PU}}$	$V_{CC} = 3.6V, I_{OL} = 1mA, V_{I}$	Full		5	50	mV	
		Control pins, V_{CC} = 3.6V, V_1 = V_{CC} or GND		Full		±0.01	±1	
		Control pins, V _{CC} = 0V or	Full		0.01	5		
Input Leakage Current	l,	Input data pins $^{(2)}$, V _{CC} = 0V or 3.6V, V _I = 5.5V		Full		0.01	5	μA
		Input data pins ⁽²⁾ , V_{CC} = 3.6V, V_{I} = V_{CC}		Full		0.01	1	
		Input data pins $^{(2)}$, V _{CC} = 3	3.6V, V _I = GND	Full	-2	-0.01		
Off State Output Current		V = 2.6V	V _o = 3.0V	Full		0.01	2	
Off-State Output Current	l _{oz}	V _{CC} = 3.6V	V _o = 0.5V	Full	-2	-0.01		μA
Output Leakage Current	ILO	Output in high-state when $V_0 = 5.5V$, $V_{CC} = 3.0V$		Full		1	30	μA
Power-Up/Down Output Current	I _{O_PU/PD}	$V_{CC} \le 1.2V, V_0 = 0.5V$ to nOE = don't care	V_{CC} , V_{I} = GND or V_{CC} ,	+25°C		0.01	10	μA
Power-Off Leakage Current	I _{OFF}	$V_{CC} = 0V$, V_I or $V_O = 0V$ to	o 5.5V	Full		0.01	10	μA
		$V_{CC} = 3.6V$,	Outputs high	Full		12	80	
Supply Current	I _{cc}	$V_1 = GND \text{ or } V_{CC},$	Outputs low	Full		12	80	μA
		I ₀ = 0A	Outputs disabled ⁽³⁾	Full		12	80	1
Additional Supply Current ⁽⁴⁾	ΔI_{CC}		Per input pin, V_{CC} = 3.0V to 3.6V, one input at V_{CC} - 0.6V, other inputs at V_{CC} or GND			0.2	80	μA
Input Capacitance	Cı	Input pins, $V_1 = 0V$ or 3.0	V	+25℃		6		pF
Output Capacitance	Co	Output pins nQn, outputs $V_0 = 0V$ or V_{CC}	disabled,	+25°C		9		pF

NOTES:

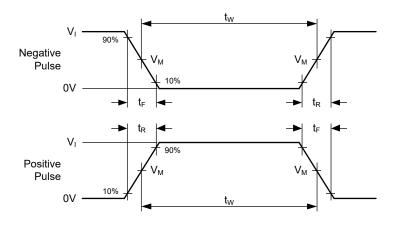
1. For valid test results, data must not be loaded into the flips-flops (or latches) after applying power.

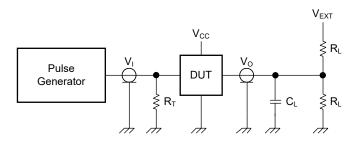
2. Unused pins at V_{CC} or GND.

3. I_{CC} is measured with outputs pulled to V_{CC} or GND.

4. This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND.

3.3V, 16-Bit D-Type Edge-Triggered Flip-Flops with 3-State Outputs


DYNAMIC CHARACTERISTICS


(For test circuit, see Figure 1. All typical values are measured at V_{CC} = 3.3V and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITI	TEMP	MIN	TYP	MAX	UNITS		
Maximum Frequency	f _{MAX}	nCP, V_{CC} = 3.3V ± 0.3V, se	nCP, V_{CC} = 3.3V ± 0.3V, see Figure 2					MHz	
Low to High Propagation Delay	+	nCP to nQn, see Figure 2	$V_{CC} = 3.3V \pm 0.3V$	+25°C		3.4			
Low to high Propagation Delay	t _{PLH}	nor to non, see rigule 2	V _{CC} = 2.7V	+25°C		3.9		ns	
High to Low Propagation Delay	+	nCP to nQn, see Figure 2	$V_{CC} = 3.3V \pm 0.3V$	+25°C		3.3		20	
High to Low Propagation Delay	t _{PHL}	nor to hon, see rigule 2	V _{CC} = 2.7V	+25°C		3.5		ns	
Off State to Lligh Branagation Dalay			$V_{CC} = 3.3V \pm 0.3V$	+25°C		4.3		20	
Off-State to High Propagation Delay	t _{PZH}	nOE to nQn, see Figure 3	V _{CC} = 2.7V	+25°C		3.9		ns	
Off-State to Low Propagation	+		$V_{CC} = 3.3V \pm 0.3V$	+25°C		4.4		20	
Delay	t _{PZL}	nOE to nQn, see Figure 3	V _{CC} = 2.7V	+25°C		4.3		ns	
		$n\overline{OE}$ to nQn, see Figure 3	$V_{CC} = 3.3V \pm 0.3V$	+25°C		4.5		20	
High to Off-State Propagation Delay	t _{PHZ}		V _{CC} = 2.7V	+25°C		4		ns	
Low to Off-State Propagation	+		$V_{CC} = 3.3V \pm 0.3V$	+25°C		3.8		20	
Delay	t _{PLZ}	$n\overline{OE}$ to nQn, see Figure 3	V _{CC} = 2.7V	+25°C		3.4		ns	
Cat Lin Tima		nDn to nCP, high or low,	$V_{CC} = 3.3V \pm 0.3V$	+25°C		0.3		20	
Set-Up Time	ts∪	see Figure 4	V _{CC} = 2.7V	+25°C		0.3		ns	
Hold Time		nDn to nCP, high or low,	$V_{CC} = 3.3V \pm 0.3V$	+25°C		0.2		20	
	t _H	see Figure 4	V _{CC} = 2.7V	+25°C		0.2		ns	
			$V_{CC} = 3.3V \pm 0.3V$	+25°C		1.5			
Dulas Width	+	nCP high, see Figure 2	V _{CC} = 2.7V	+25°C		1.5			
Pulse Width	tw		$V_{CC} = 3.3V \pm 0.3V$	+25°C		1.5		- ns	
		nCP low, see Figure 2	V _{CC} = 2.7V	+25°C		1.5			

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

R_L = Load resistance.

C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

V_{EXT} = External voltage for measuring switching times.

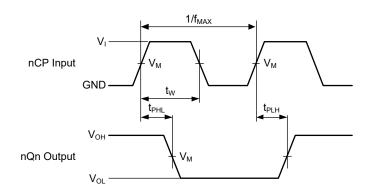
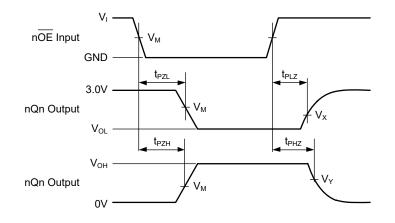

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

SUPPLY VOLTAGE	INPUT			LOAD		V _{EXT}			
V _{cc}	VI	fi	tw	t _R , t _F	CL	RL	t _{PHZ} , t _{PZH}	t_{PLZ}, t_{PZL}	t _{PLH} , t _{PHL}
2.7V to 3.6V	2.7V	≤ 10MHz	500ns	≤ 2.5ns	50pF	500Ω	GND	6V	Open

WAVEFORMS



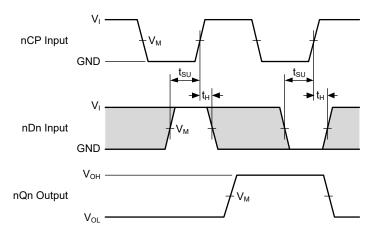
Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 2. Clock Input to Output Propagation Delays, Clock Pulse Width and Maximum Clock Frequency

Test conditions are given in Table 1.


Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. Enable and Disable Times

WAVEFORMS (continued)

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

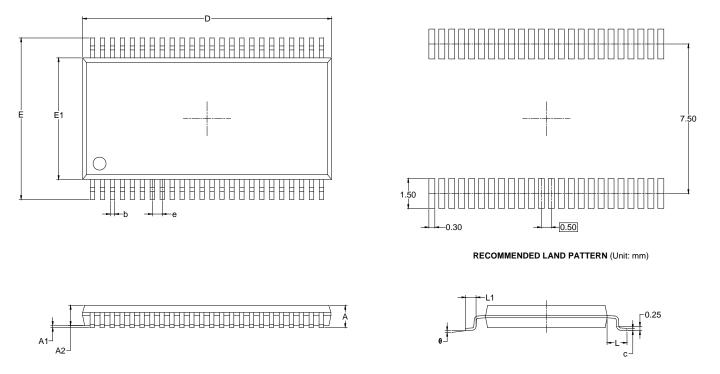
The shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 4. Data Set-Up and Hold Times

Table 2. Measurement Points

SUPPLY VOLTAGE	INF	TU			
V _{cc}	VI	V _M	V _M	V _Y	
2.7V to 3.6V	2.7V	1.5V	1.5V	V _{OL} + 0.3V	V _{OH} - 0.3V

REVISION HISTORY

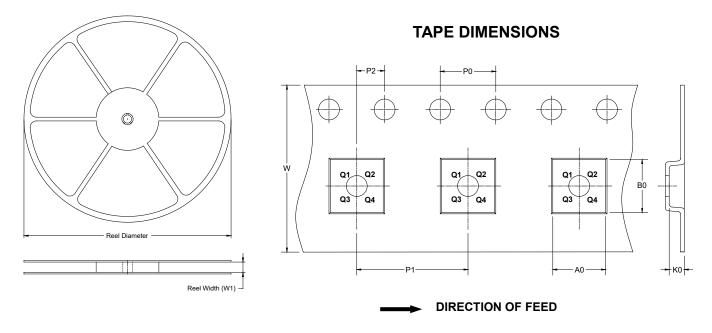

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

NOVEMBER 2021 – REV.A to REV.A.1	Page
Updated HBM value in Absolute Maximum Ratings section	2
Changes from Original (MARCH 2021) to REV.A	Page
Changed from product preview to production data	All

PACKAGE OUTLINE DIMENSIONS

TSSOP-48

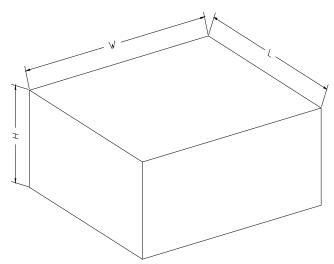
Symbol	D	imensions In Millimet	ers
Symbol	MIN	MOD	MAX
A			1.20
A1	0.05	0.10	0.15
A2	0.85	0.95	1.05
b	0.18		0.26
С	0.15		0.19
D	12.40	12.50	12.60
E	7.90	8.10	8.30
E1	6.00	6.10	6.20
е		0.50 BSC	
L		1.00 REF	
L1	0.45		0.75
θ	0°		8°


NOTES: 1. Body dimensions do not include mode flash or protrusion.

2. This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP-48	13"	24.4	8.60	13.00	1.80	4.0	12.0	2.0	24.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	DD0002

