

SGM8196 High Voltage, High-Side Current-Sense Amplifier

GENERAL DESCRIPTION

The SGM8196 is a high voltage, high-side current-sense amplifier that operates from 2.7V to 5.5V single supply. The device also features a wide common mode voltage range from 2.9V to 70V in single-supply operation or $(-V_s) + 2.9V$ to $(-V_s) + 70V$ in dual-supply operation. And the input common mode voltage is independent with the power supply voltage.

The SGM8196 is designed to convert the measured small differential voltage across the high-side shunt resistor to the output voltage referred to GND. There are four different gains for SGM8196: 20V/V, 25V/V, 50V/V or 100V/V. The current consumption of the device is only 320μ A and almost no leakage current flows into the device in standby mode, which minimizes power consumption in applications.

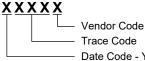
The SGM8196 is available in Green SOIC-8 and TSSOP-8 packages. It is specified over the extended -40° C to $+125^{\circ}$ C temperature range.

FEATURES

- Independent Supply and Input Common Mode Voltages
- Wide Common Mode Voltage in Recommended Operating Conditions:
 - 2.9V to 70V for Single-Supply Operation
 - * $(-V_S) + 2.9V$ to $(-V_S) + 70V$ for Dual-Supply Operation
- Wide Common Mode Voltage in Reversed Battery and Load-Dump Conditions: -75V to 75V
- Supply Voltage Range: 2.7V to 5.5V Single Supply
- Low Supply Current: 320µA (TYP)
- Gain Options: 20V/V, 25V/V, 50V/V or 100V/V
- Output with Buffer
- -40°C to +125°C Operating Temperature Range
- Available in Green SOIC-8 and TSSOP-8 Packages

APPLICATIONS

Current Monitoring Application of Controlling DC Motor Photo-Voltaic Application Battery Charger Precision Current Source Current Monitoring of Laptops Uninterruptible Power Supply High-End Power Supply


SGM8196

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM8196	SOIC-8	-40°C to +125°C	SGM8196XS8G/TR	SGM 8196XS8 XXXXX	Tape and Reel, 4000
36100190	TSSOP-8	-40°C to +125°C	SGM8196XTS8G/TR	SGM8196 XTS8 XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

- Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Differential Voltage of Input Pins (VP - VM), VID±75V					
Sensing Pins Input Voltages (V _P , V _M) ⁽¹⁾ , V _{IN_SENSE}					
-75V to 75V					
Voltages Level of Gain-Select Pins (SEL1, SEL2) $^{(2)}$, V _{IN_SEL}					
-0.3V to (+V _S) + 0.3V					
Positive Supply Voltage $^{(2)},$ +Vs0.3V to 7V					
DC Supply Voltage, (+Vs) - (-Vs)0V to 22V					
DC Output Pin Voltage $^{(2)}$, V _{OUT} 0.3V to $(+V_S) + 0.3V$					
Package Thermal Resistance					
SOIC-8, θ _{JA} 120°C/W					
SOIC-8, θ _{JB}					
SOIC-8, θ _{JC}					
TSSOP-8, θ _{JA}					
TSSOP-8, θ _{JB} 109.5°C/W					
TSSOP-8, θ _{JC} 55.3°C/W					
Junction Temperature+150°C					
Storage Temperature Range65°C to +150°C					
Lead Temperature (Soldering, 10s)+260°C					
ESD Susceptibility					
HBM4000V					
CDM					

RECOMMENDED OPERATING CONDITIONS

Supply Voltage for Single-Supply Operation (-Vs Connected to						
GND = 0V), +V _S	2.7V to 5.5V					
Negative Supply Voltage for Dual-Supply Operation						
+Vs = 5.5V (MAX)	14.5V to 0V					
+V _S = 2.7V (MAX)	17.3V to 0V					

Common Mode Voltage Range Referred to -Vs Pin

	J
Operating Temperature Range40°C to +125°C	С

NOTES:

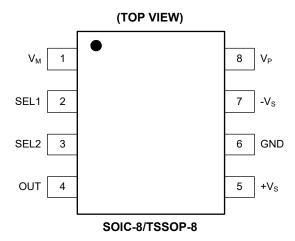
1. These values of voltage are tested relative to the -V_S pin.

2. These values of voltage are tested relative to the GND pin.

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	I/O	FUNCTION	
1	VM	Analog Input	External Sense Resistor Connection. See Single-Supply Operation Schematic.	
2	SEL1	Digital Input	Gain-Select Pin.	
3	SEL2	Digital Input	Gain-Select Pin.	
4	OUT	Analog Output	Output Pin. V_{OUT} is proportional to $V_{SENSE} = V_P - V_M$.	
5	+Vs	_	Positive Power Supply Pin.	
6	GND	—	Ground.	
7	-Vs	_	Negative Power Supply Pin.	
8	VP	Analog Input	External Sense Resistor Connection. See Single-Supply Operation Schematic.	

ELECTRICAL CHARACTERISTICS

 $(+V_{S} = 5V, -V_{S} \text{ connected to GND (single-supply operation)}, V_{M} = 12V, V_{SENSE} = V_{P} - V_{M} = 50mV$, no load on OUT pin, all gain configurations, Full = -40°C to +125°C, typical values are at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
Input Characteristics	L		l					
Innut Offeet Veltere (1)	M		+25°C		±15	±75		
Input Offset Voltage (1)	Vos		Full			±100	μV	
Input Offset Voltage Drift	$\Delta V_{OS} / \Delta T$	G = 50V/V	Full		±0.05	±0.3	µV/⁰C	
Input Leakage Current	I _{LK}	V _S = 0V	Full			0.5	μA	
Input Bias Current	I _B	V _{SENSE} = 0V	Full		20	30	μA	
DC Common Mode Rejection Ratio, RTI (2)	DC CMRR	V _M = 2.9V to 70V	Full	110	145		dB	
AC Common Mode Rejection Ratio, RTI (Peak-to-Peak Voltage Variation)	AC CMRR	G = 50V/V or G = 100V/V V _M = 2.9V to 30V, 1kHz sine wave	+25℃		100		dB	
Logic Low-Level Input Voltage (SEL1 and SEL2)	V _{IL}	V _s = 2.7V to 5.5V	Full	-0.3		0.4	V	
Logic High-Level Input Voltage (SEL1 and SEL2)	V _{IH}	V _S = 2.7V to 5.5V	Full	1.2		Vs	V	
Input Bias Current of Gain-Select Pins (SEL1 and SEL2)	I _{SEL}	SEL pin connected to GND or $\ensuremath{V}_{\ensuremath{S}}$	Full		20	150	nA	
Output Characteristics					_	-		
		SEL1 = GND, SEL2 = GND	+25°C		20			
Gain	G	SEL1 = GND, SEL2 = +V _S	+25°C		25			
Gain	9	SEL1 = +V _S , SEL2 = GND	+25°C		50			
		SEL1 = +V _S , SEL2 = +V _S	+25°C		100			
Output Voltage Drift ⁽³⁾	$\Delta V_{OUT} / \Delta T$	G = 50V/V	Full		±10	±40	ppm/°C	
Output Stage Load Regulation	$\Delta V_{\text{OUT}} / \Delta I_{\text{OUT}}$	G = 50V/V, -10mA < I _{OUT} < 10mA	+25°C		±0.05	±0.8	mV/mA	
		$V_{\text{SENSE}} = 50 \text{mV}^{(5)}$	+25°C			±0.8		
		V SENSE - SOMV A	Full			±3.0	- %	
		V _{SENSE} = 90mV ⁽⁵⁾	+25°C			±0.8		
		V SENSE - 9011V	Full			±3.0		
Total Output Voltage Accuracy (4)	Δν _{ουτ}	V _{SENSE} = 20mV	+25°C			±1		
Total Output Voltage Accuracy	∆v 001	V SENSE - ZOTTV	Full			±3.5		
		V _{SENSE} = 10mV	+25℃			±1		
		V SENSE - TOTTV	Full			±3.5		
		V _{SENSE} = 5mV	+25℃			±1		
			Full			±4.0		
Output Short-Circuit Current	I _{SC}	OUT connected to V_{S} or GND	+25°C	30	35		mA	
Output Stage High-State Saturation Voltage	V _{он}	$V_{OH} = V_S - V_{OUT}, V_{SENSE} = 1V,$ $I_{OUT} = 1mA$	+25℃		50	60	mV	
Output Stage Low-State Saturation Voltage	V _{OL}	V _{SENSE} = -1V, I _{OUT} = 1mA	+25°C		40	55	mV	

NOTES:

1. See Gain (G) and Input Offset Voltage (Vos) section.

2. See Common Mode Rejection Ratio (CMRR) section.

3. See Output Voltage Drift section.

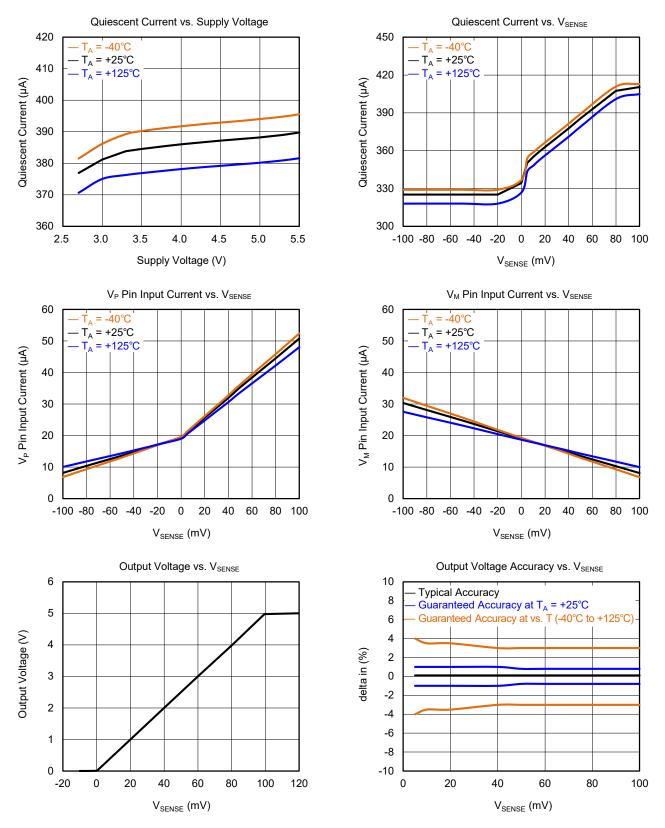
4. See Output Voltage Accuracy section.

5. Except for G = 100V/V.

ELECTRICAL CHARACTERISTICS (continued)

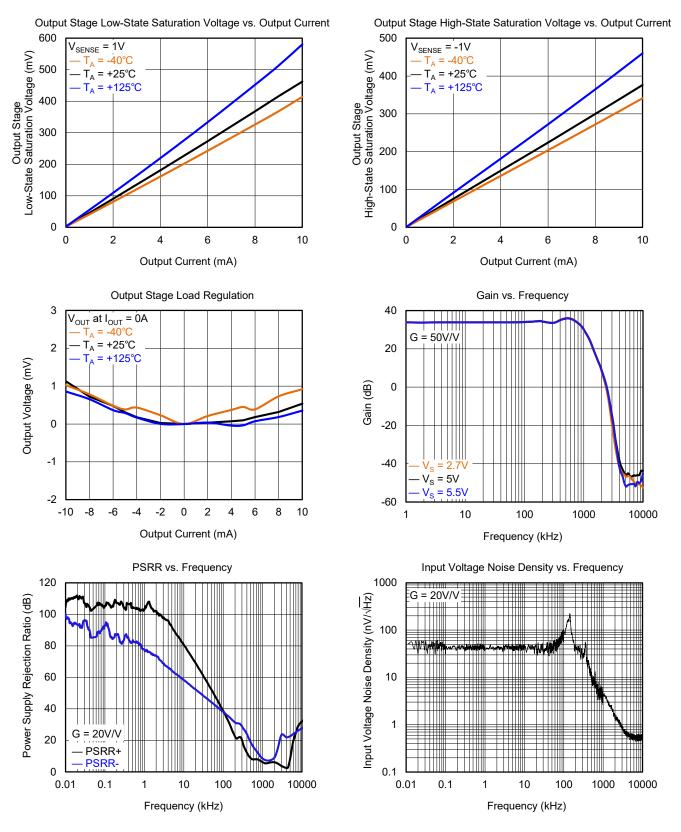
 $(+V_{s} = 5V, -V_{s} \text{ connected to GND (single-supply operation)}, V_{M} = 12V, V_{SENSE} = V_{P} - V_{M} = 50mV$, no load on OUT pin, all gain configurations, Full = -40°C to +125°C, typical values are at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		TEMP	MIN	TYP	MAX	UNITS
Power Supply								
Total Supply Current		$V_{SENSE} = 0V$		Full		320		
Total Supply Current	lα	G = 50V/V, V _{SENSE} = 50mV	Full		420	520	μA	
Power Supply Rejection Ratio (6)	PSRR	SEL1 = GND, SEL2 = GND, V _S = 2.7V to 5.5V, V_{SENSE} = 30mV		Full	95	130		dB
Frequency Response								
3dB Bandwidth	BW	G = 50V/V, C _L = 47pF, V _M = 12V, V _{SENSE} = 50mV		+25°C		950		kHz
Slew Rate	SR	V_{SENSE} = 10mV to 10	0mV	+25°C		1		V/µs
		V_{SENSE} square pulse applied to generate a variation of V_{OUT} from 500mV to 3V, C_{L} = 47pF	G = 20V/V	+25°C		25		- µs
Response to Input Differential Voltage Change			G = 25V/V	+25°C		25		
(Output Settling to 1% of Final Value)	t _s		G = 50V/V	+25°C		25		
			G = 100V/V	+25°C		25		
Response to a Gain Change (Output Settling to 1% of Final Value)	t _{SEL}	Any change of state of SEL1 or SEL2 pin		+25°C		15		μs
Response to Common Mode Voltage Change (Output Settling to 1% of Final Value)	t _{REC}	$+V_s = 5V$, $-V_s = -5V$, V_M step change from -2V to 30V or 30V to -2V		+25°C		35		μs
Noise								
Equivalent Input Noise Voltage	en	f = 1kHz		+25°C		50		nV/√Hz


NOTE:

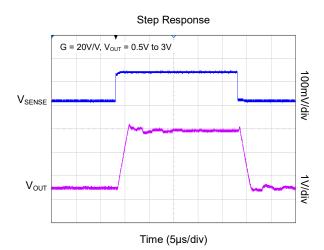
6. See Supply Voltage Rejection Ratio (PSRR) section.

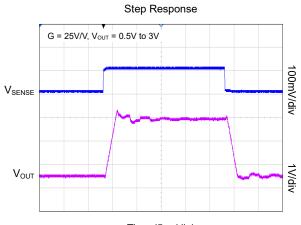
TYPICAL PERFORMANCE CHARACTERISTICS


At $T_A = +25^{\circ}C$, $V_S = 5V$, $V_{SENSE} = V_P - V_M = 50mV$, $V_M = 12V$, no load on OUT pin, unless otherwise noted.

SG Micro Corp

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

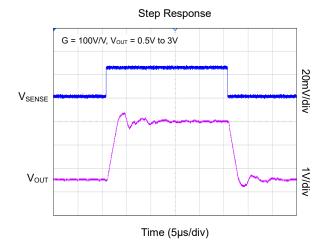

At $T_A = +25^{\circ}$ C, $V_S = 5$ V, $V_{SENSE} = V_P - V_M = 50$ mV, $V_M = 12$ V, no load on OUT pin, unless otherwise noted.



SG Micro Corp

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At $T_A = +25^{\circ}$ C, $V_S = 5$ V, $V_{SENSE} = V_P - V_M = 50$ mV, $V_M = 12$ V, no load on OUT pin, unless otherwise noted.



Time (5µs/div)

DETAILED DESCRIPTION

Common Mode Rejection Ratio (CMRR)

The CMRR measures the ability to reject any variation from input common mode voltage of the SGM8196. The CMRR equation in Equation 1 illustrates the effect on the differential input signal by changing the common mode voltage level:

$$CMRR = -20 \times \log \frac{\Delta V_{OUT}}{\Delta V_{CM} \times G}$$
(1)

Power Supply Rejection Ratio (PSRR)

The PSRR measures the ability of the SGM8196 to reject any variation from the power supply. The PSRR equation in Equation 2 illustrates the effect on the differential input signal by changing the supply voltage level:

$$PSRR = -20 \times \log \frac{\Delta V_{OUT}}{\Delta V_{S} \times G}$$
(2)

Gain (G) and Input Offset Voltage (Vos)

The input offset voltage can be calculated within the linear region of the curve in Figure 1. If the corresponding sense voltage for V_{OUT1} is V_{SENSE1} and the corresponding sense voltage for V_{OUT2} is V_{SENSE2} , the following equation can be used to calculate the offset voltage of SGM8196:

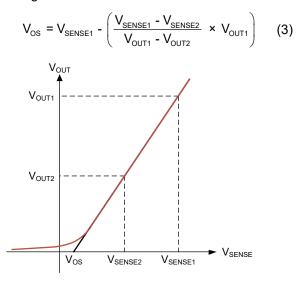


Figure 1. V_{OUT} vs. V_{SENSE} Characteristics: Detail for Low V_{SENSE} Values

The values of VSENSE1 and	V _{SENSE2} used for the input
offset calculations are detailed	ed in Table 1.

Table 1. Test Conditions for Vos Voltage Calculation

Product	Product Gain (V/V)		V _{SENSE2} (mV)
SGM8196	20	50	5
	25	50	5
	50	50	5
	100	40	5

Input Offset Voltage Drift

The offset voltage drift versus temperature is the absolute maximum variation of V_{OS} relative to its value at +25°C over the temperature range. It is calculated with Equation 5:

$$\frac{\Delta V_{OS}}{\Delta T} = MAX \frac{V_{OS}(T_A) - V_{OS}(+25^{\circ}C)}{T_A - 25^{\circ}C}$$
(5)

with $T_A = -40^{\circ}C$ to $+125^{\circ}C$

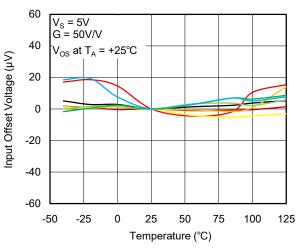


Figure 2. Input Offset Voltage Drift vs. Temperature

Output Voltage Drift

The output voltage drift versus temperature is the absolute maximum variation of V_{OUT} relative to its value at +25°C over the temperature range. The following equation illustrates how to calculate the drift of the output voltage:

$$\frac{\Delta V_{\text{out}}}{\Delta T} = MAX \frac{V_{\text{out}}(T_{\text{A}}) - V_{\text{out}}(+25^{\circ}C)}{T_{\text{A}} - 25^{\circ}C}$$
(4)

with $T_A = -40^{\circ}C$ to $+125^{\circ}C$

DETAILED DESCRIPTION (continued)

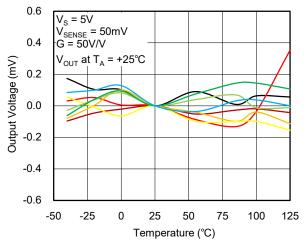


Figure 3. Output Voltage Drift vs. Temperature

Output Voltage Accuracy

The accuracy of the output voltage is the gap between the actual V_{OUT} and the ideal V_{OUT} . For the ideal V_{OUT} , it equals to the differential input voltage multiplied by the theoretical gain of the SGM8196, which is shown as Equation 6:

$$V_{OUT-TH} = G \times V_{SENSE}$$
 (6)

The actual V_{OUT} is different from the ideal one due to the following two features:

• the input offset voltage Vos

• the non-linearity

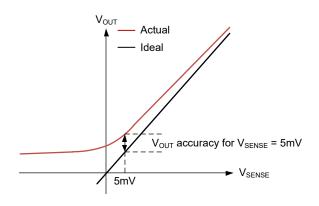


Figure 4. V_{OUT} vs. V_{SENSE} Theoretical and Actual Characteristics

The output voltage accuracy is a percentage value. The Equation 7 illustrates how to calculate the accuracy of the output voltage:

$$\Delta V_{\text{out}} = \frac{\text{ABS}(V_{\text{out}} - (G \times V_{\text{sense}}))}{G \times V_{\text{sense}}}$$
(7)

with 20V/V, 25V/V, 50V/V or 100V/V which can be set by the gain-select pins (SEL1 and SEL2).

Maximum Permissible Voltages on Pins

Both the single-supply and dual-supply operations can be applied to the SGM8196. For dual-supply mode, the customers need to connect the -V_S pin to a negative supply voltage. In Figure 5, it shows that the potential voltage for the absolute maximum voltage of V_P and V_M is referred to the -V_S pin, while the absolute voltage for SEL1, SEL2 and positive power supply is referred to the GND pin. Also, one thing should be mentioned that the maximum voltage difference between +V_S and -V_S is equal to 22V.

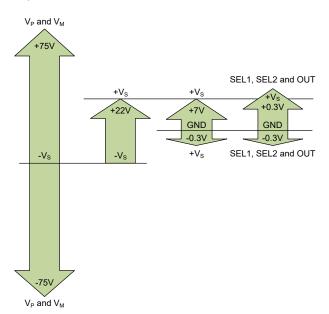


Figure 5. Maximum Voltages on Pins

APPLICATION INFORMATION

The SGM8196 can operate in single-supply operation or dual-supply operation. If the users desire to apply a single-supply voltage to the SGM8196, the allowable input common mode voltage is not related to the power supply and the range is from 2.9V to 70V. If the users desire to apply a dual-supply voltage to the SGM8196, the allowable input common mode voltage will be shifted by the voltage level of $-V_s$. For example, if the $+V_s$ and $-V_s$ of the SGM8196 are equal to +5V and -5V respectively, the allowable input common mode voltage range is from -2.1V to 65V. Ramp time of SGM8196 within 1ms could keep from output jitter.

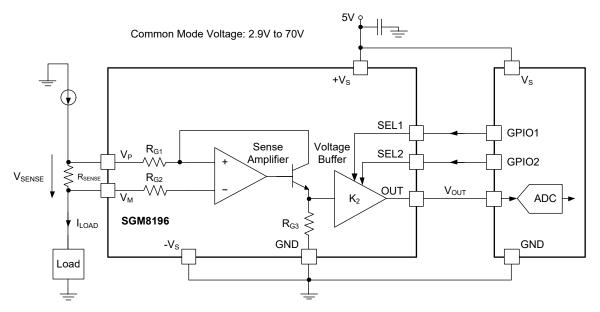


Figure 6. Single-Supply Operation Schematic

The SGM8196 can measure the current from the load and transfer the analog output voltage to the internal ADC of the MCU. The SEL1 and SEL2 pins are also controlled by the I/O pins of MCU to adjust the gain of the SGM8196.

The V_{SENSE} is the voltage drop of R_{SENSE} due to the current flowing through the shunt resistor. Because of the significant small input current of the sense amplifier, the inverting input voltage is equal to V_M. The open-loop gain of the amplifier is special large, so the non-inverting input of the amplifier is forced to be equal to the inverting input. Consequently, the V_{SENSE} is matched with the voltage drop across R_{G1}.

The voltage drop at R_{G1} is equal to:

$$V_{RG1} = V_{SENSE} = R_{SENSE} \times I_{LOAD}$$
 (8)

 I_{RG1} is the amount of current that flows through the R_{G1} , so the calculation of I_{RG1} is given as follows:

$$I_{RG1} = V_{SENSE}/R_{G1}$$
 (9)

All of the I_{RG1} flows into the resistor R_{G3} (the input impedance of the buffer is significant large). As a result, the voltage drop across R_{G3} can be calculated as below:

$$V_{RG3} = R_{G3} \times I_{RG1} = (R_{G3}/R_{G1}) \times V_{SENSE} = K_1 \times V_{SENSE}$$

with $K_1 = R_{G3}/R_{G1}$ (10)

The V_{RG3} will be buffered by the second stage amplifier with a voltage gain of K_2 (can be adjusted by SEL1 and SEL2):

$$V_{OUT} = K_1 \times K_2 \times V_{SENSE} = G \times V_{SENSE}$$

with G = K₁ × K₂ (11)

or:
$$V_{OUT} = G \times R_{SENSE} \times I_{LOAD}$$
 (12)

The first gain K_1 , which is equal to R_{G3}/R_{G1} , can be set to 20V/V. The second gain K_2 can be set to 1, 1.25, 2.5 or 5 by the voltage level of SEL1 and SEL2. The values of R_{SENSE} and gain will determine the full-scale output voltage range of the SGM8196, so these values should be selected properly based on the application.

APPLICATION INFORMATION (continued)

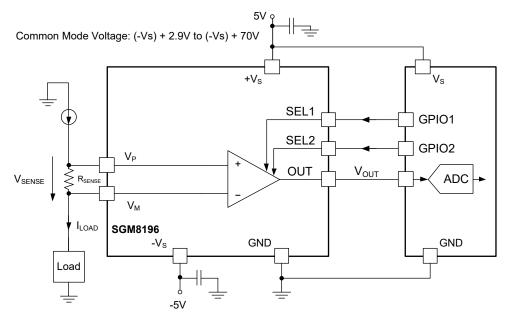


Figure 7. Dual-Supply Operation Schematic

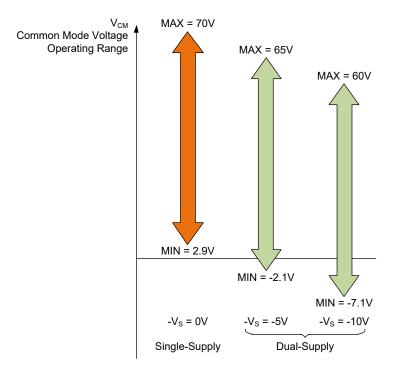
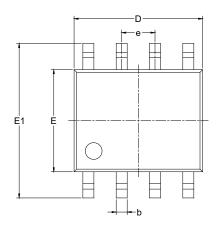
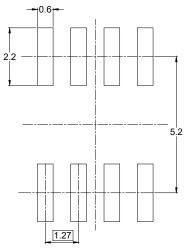


Figure 8. Common Mode vs. Supply Voltage in Dual-Supply Operation

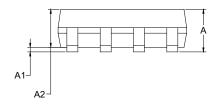
Page

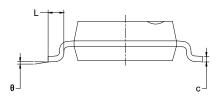
REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

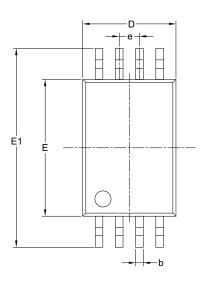

Changes from Original (AUGUST 2024) to REV.A

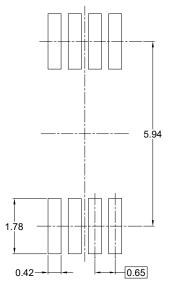
Changed from product preview to production dataAll



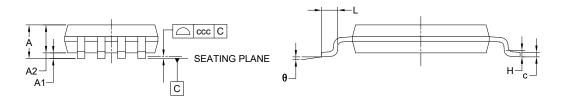

PACKAGE OUTLINE DIMENSIONS SOIC-8

RECOMMENDED LAND PATTERN (Unit: mm)


Symbol	-	Dimensions In Millimeters		nsions ches
	MIN	MAX	MIN	MAX
A	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
с	0.170	0.250	0.006	0.010
D	4.700	5.100	0.185	0.200
E	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
е	1.27	BSC	0.050	BSC
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°


NOTES: 1. Body dimensions do not include mode flash or protrusion.

2. This drawing is subject to change without notice.

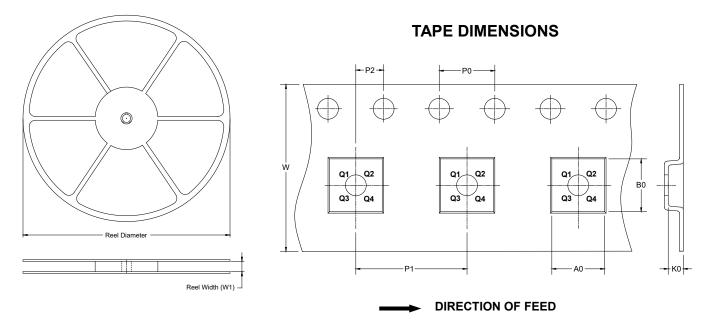


PACKAGE OUTLINE DIMENSIONS TSSOP-8

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dir	nensions In Millimet	ers		
	MIN	NOM	МАХ		
A	-	-	1.200		
A1	0.050	-	0.150		
A2	0.800	-	1.050		
b	0.190	-	0.300		
С	0.090	-	0.200		
D	2.900	-	3.100		
E	4.300	-	4.500		
E1	6.200	-	6.600		
е		0.650 BSC			
L	0.450	-	0.750		
Н	0.250 TYP				
θ	0°	-	8°		
ССС	0.100				

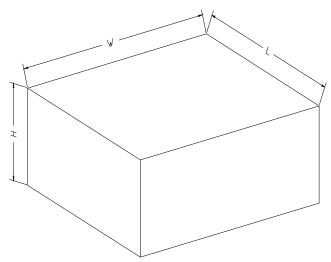
NOTES:


This drawing is subject to change without notice.
The dimensions do not include mold flashes, protrusions or gate burrs.

3. Reference JEDEC MO-153.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-8	13″	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1
TSSOP-8	13″	12.4	6.76	3.30	1.80	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	DD0002

