Single-Supply Translating Buffer Gate

GENERAL DESCRIPTION

The 74LV1T34 is a CMOS logic single buffer level shifter. It operates with a wide voltage range from 1.65V to 5.5V, making it suitable for industrial, portable, and telecommunications applications. Due to the wide power supply voltage range, this device can generate the required output level for connection to the controller or processor.

The input features a low threshold circuit. When the supply voltage is at 3.3V, the input can match 1.8V input logic, allowing a level-up translation from 1.8V to 3.3V. Furthermore, the input pin can tolerate up to 5V and support level-down translation. For instance, when the supply voltage is at 2.5V, the output voltage can translate from 3.3V to 2.5V. With a reference to the supply voltage, the CMOS level of output can be at 1.8V, 2.5V, 3.3V and 5.0V.

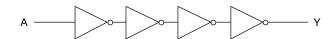
This device has output driving capability of 8mA that can be used to reduce line reflection, overshoot, and undershoot resulted from high driving output.

The 74LV1T34 is available in Green SC70-5 and SOT-23-5 packages. It operates over an ambient temperature range of -40°C to +125°C.

APPLICATIONS

Industrial Equipment Telecom Equipment Medical Equipment

Computing: Server, PC and Notebook


FEATURES

- Wide Supply Voltage Range: 1.65V to 5.5V
- Input Accepts Voltages up to 5.5V
- Single-Supply Voltage Translator at 1.8V, 2.5V, 3.3V and 5.0V

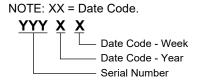
74LV1T34

- +8mA/-8mA Output Current
- Level-Up Translation:
 - 1.2V to 1.8V at V_{CC} = 1.8V
 - 1.5V to 2.5V at V_{CC} = 2.5V
 - 1.8V to 3.3V at V_{CC} = 3.3V
 - 3.3V to 5.0V at V_{CC} = 5.0V
- Level-Down Translation:
 - 3.3V to 1.8V at V_{CC} = 1.8V
 - 3.3V to 2.5V at V_{CC} = 2.5V
 - 5.0V to 3.3V at V_{CC} = 3.3V
- Logic Output Refers to Supply Voltage
- -40°C to +125°C Operating Temperature Range
- Available in Green SC70-5 and SOT-23-5 **Packages**

LOGIC DIAGRAM

FUNCTION TABLE

INPUT (Low Level Input)	OUTPUT (V _{CC} CMOS)
A	Y
Н	Н
L	L


H = High Voltage Level

L = Low Voltage Level

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
74LV1T34	SC70-5	-40°C to +125°C	74LV1T34XC5G/TR	0C1XX	Tape and Reel, 3000
74201134	SOT-23-5	-40°C to +125°C	74LV1T34XN5G/TR	0C5XX	Tape and Reel, 3000

MARKING INFORMATION

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS (1)

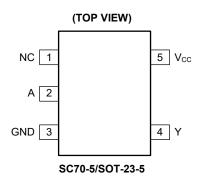
, 12002012 iiii 21iiii 11ii 11ii 100
Supply Voltage Range, V _{CC} 0.5V to 7.0V
Input Voltage Range, V _I ⁽²⁾ 0.5V to 7.0V
Output Voltage Range, $V_0^{(2)}$ -0.5V to MIN(7.0V, V_{CC} + 0.5V)
Input Clamp Current, I _{IK} (V _I < 0V)20mA
Output Clamp Current, $I_{OK}(V_O < 0V \text{ or } V_O > V_{CC}) \dots \pm 20 \text{mA}$
Continuous Output Current, I _O ±25mA
Continuous Current through V _{CC} or GND±50mA
Junction Temperature (3)+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM6000V
CDM1000V

RECOMMENDED OPERATING CONDITIONS

INCOMINICIADED OF CIVATIIN	3 COMPLICATION
Supply Voltage Range, Vcc	1.65V to 5.5V
Input Voltage Range, V _I	0V to 5.5V
Output Voltage Range, Vo	0V to V _{CC}
Input Transition Rise or Fall Rate, $\Delta t/\Delta V$	
V _{CC} = 1.8V	20ns/V (MAX)
V _{CC} = 3.3V or 2.5V	20ns/V (MAX)
V _{CC} = 5.0V	20ns/V (MAX)
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

- Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.
- 2. The input and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.
- 3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	NC	No Connection.
2	Α	Data Input.
3	GND	Ground.
4	Y	Data Output.
5	Vcc	Supply Voltage.

AELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS				
		V _{CC} = 1.65V to 1.8V	Full	1.00							
		V _{CC} = 2.0V	Full	1.03							
		V _{CC} = 2.25V to 2.5V	Full	1.18			v				
High-Level Input Voltage	V	V _{CC} = 2.75V	Full	1.25							
High-Level Input Voltage	V_{IH}	V _{CC} = 3.0V to 3.3V	Full	1.39			V				
		V _{CC} = 3.6V	Full	1.48							
		V _{CC} = 4.5V to 5.0V	Full	2.03							
		V _{CC} = 5.5V	Full	2.11							
		V _{CC} = 1.65V to 2.0V	Full			0.55					
Low Lovel Input Voltage	V	V _{CC} = 2.25V to 2.75V	Full			0.65	V				
Low-Level Input Voltage	V_{IL}	V _{CC} = 3.0V to 3.6V	Full			0.65	V				
		V _{CC} = 4.5V to 5.5V	Full			0.80					
		V_{CC} = 1.65V to 5.5V, I_{OH} = -20 μ A	Full	V _{CC} - 0.1	V _{CC} - 0.01						
		V _{CC} = 1.65V, I _{OH} = -2mA	Full	1.21	1.53						
		V _{CC} = 1.8V, I _{OH} = -2mA	Full	1.45	1.70						
	V _{ОН}	V _{CC} = 2.3V, I _{OH} = -3mA	Full	1.93	2.19						
		$V_{CC} = 2.5V, I_{OH} = -3mA$	Full	2.15	2.40						
High-Level Output Voltage		$V_{CC} = 3.0V, I_{OH} = -3mA$	Full	2.70	2.92		V				
		V _{CC} = 3.0V, I _{OH} = -5.5mA	Full	2.49	2.85						
		$V_{CC} = 3.3V$, $I_{OH} = -5.5mA$	Full	2.80	3.17						
		$V_{CC} = 4.5V$, $I_{OH} = -4mA$	Full	4.10	4.42						
		V _{CC} = 4.5V, I _{OH} = -8mA	Full	3.95	4.35						
		V _{CC} = 5.0V, I _{OH} = -8mA	Full	4.50	4.86						
		V_{CC} = 1.65V to 5.5V, I_{OL} = 20 μ A	Full		0.01	0.10					
		V _{CC} = 1.65V, I _{OL} = 2mA	Full		0.07	0.25					
		V _{CC} = 2.3V, I _{OL} = 3mA	Full		0.07	0.20					
Low-Level Output Voltage	V_{OL}	V _{CC} = 3.0V, I _{OL} = 3mA	Full		0.06	0.15	V				
		$V_{CC} = 3.0V, I_{OL} = 5.5mA$	Full		0.11	0.25					
		V_{CC} = 4.5V, I_{OL} = 4mA	Full		0.06	0.20					
		V_{CC} = 4.5V, I_{OL} = 8mA	Full		0.12	0.35					
Input Leakage Current	I _I	A input, V_{CC} = 0V, 1.8V, 2.5V, 3.3V, 5.5V, V_1 = V_{CC} or GND	Full		±0.01	±1	μΑ				
Supply Current	Icc	V_{CC} = 1.8V to 5.5V, V_I = V_{CC} or GND, I_O = 0A	Full		0.01	5	μA				
Additional Supply Current	ΔI_{CC}	One input at 0.3V or 3.4V, other inputs at V_{CC} or GND, V_{CC} = 1.8V, I_{O} = 0A	Full		0.05	5	μΑ				
, taditional cappiy current	<u> </u>	One input at 0.3V or 1.1V, other inputs at V_{CC} or GND, V_{CC} = 5.5V, I_0 = 0A	Full		0.30	1	mA				
Input Capacitance	Cı	$V_{CC} = 3.3V$, $V_i = V_{CC}$ or GND	+25°C		4		pF				
Output Capacitance	Co	$V_{CC} = 3.3V$, $V_O = V_{CC}$ or GND	+25°C		6		pF				

DYNAMIC CHARACTERISTICS

(See Figure 1 for test circuit. Full = -40°C to +125°C, all typical values are measured at T_A = +25°C and V_{CC} = 1.8V, 2.5V, 3.3V and 5.0V respectively, unless otherwise noted.)

PARAMETER	SYMBOL	CON	DITIONS	TEMP	MIN (1)	TYP	MAX (1)	UNITS
			$V_{CC} = 1.8V, C_L = 15pF$	Full	0.5	7.5	16.0	
			V _{CC} = 1.8V, C _L = 30pF	Full	0.5	8.5	20.0	
			$V_{CC} = 2.5V, C_L = 15pF$	Full	0.5	5.5	9.0	
Propagation Delay (2)	4	A to Y, see Figure 2	$V_{CC} = 2.5V, C_L = 30pF$	Full	0.5	6.5	11.0	no
Propagation Delay V	t _{PD}	A to 1, see Figure 2	V _{CC} = 3.3V, C _L = 15pF	Full	0.5	5.0	8.0	ns
			$V_{CC} = 3.3V, C_L = 30pF$	Full	0.5	6.0	9.0	
			$V_{CC} = 5.0V, C_L = 15pF$	Full	0.5	5.0	6.5	
			$V_{CC} = 5.0V, C_L = 30pF$	Full	0.5	6.0	8.0	
			$V_{CC} = 1.8V \pm 0.15V$	+25°C		14.0		
Power Dissipation Capacitance (3)	C _{PD}	f = 1MHz and 10MHz	$V_{CC} = 2.5V \pm 0.2V$	+25°C		14.0		
	OPD		$V_{CC} = 3.3V \pm 0.3V$	+25°C		15.0		pF
			$V_{CC} = 5.0V \pm 0.5V$	+25°C		17.0		

NOTES:

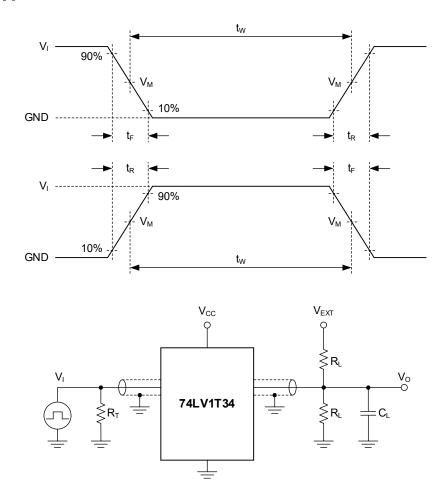
- 1. Specified by design and characterization, not production tested.
- 2. t_{PD} is the same as t_{PLH} and t_{PHL} .
- 3. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

$$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$$

where:

 f_i = Input frequency in MHz.

f_o = Output frequency in MHz.


C_L = Output load capacitance in pF.

V_{CC} = Supply voltage in Volts.

N = Number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_o) = Sum \text{ of outputs.}$

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

R_L: Load resistance.

C_L: Load capacitance (includes jig and probe).

 R_T : Termination resistance (equals to output impedance Z_0 of the pulse generator).

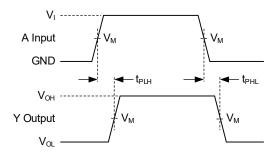

 V_{EXT} : External voltage is used to measure switching time.

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

SUPPLY VOLTAGE	INPUT			LO	V _{EXT}	
Vcc	Vı	t _R , t _F	f _{MAX}	CL	R∟	t _{PLH} , t _{PHL}
1.8V ± 0.15V	V_{CC}	≤ 1.0ns	15MHz	15pF, 30pF	1ΜΩ	GND
2.5V ± 0.2V	V_{CC}	≤ 1.0ns	25MHz	15pF, 30pF	1ΜΩ	GND
3.3V ± 0.3V	V_{CC}	≤ 1.0ns	50MHz	15pF, 30pF	1ΜΩ	GND
5.0V ± 0.5V	V_{CC}	≤ 1.0ns	50MHz	15pF, 30pF	1ΜΩ	GND

WAVEFORMS

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 2. Input A to Output Y Propagation Delay Times

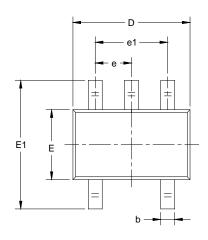
Table 2. Measurement Points

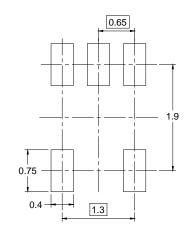
INPUT	OUTPUT		
V _M ⁽¹⁾	V _M		
0.5 × V _{CC}	0.5 × V _{CC}		

NOTE:

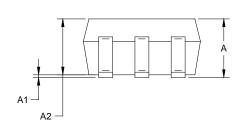
1. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 1.0ns.

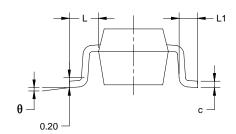
REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

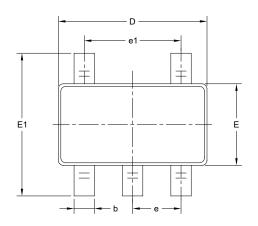

Changes from Original (DECEMBER 2023) to REV.A

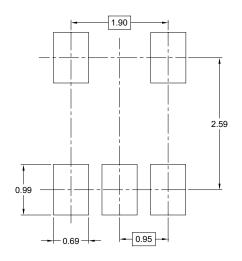
Page



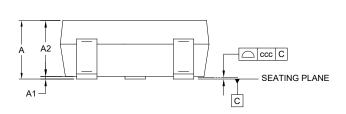

PACKAGE OUTLINE DIMENSIONS SC70-5

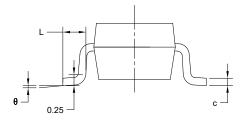
RECOMMENDED LAND PATTERN (Unit: mm)





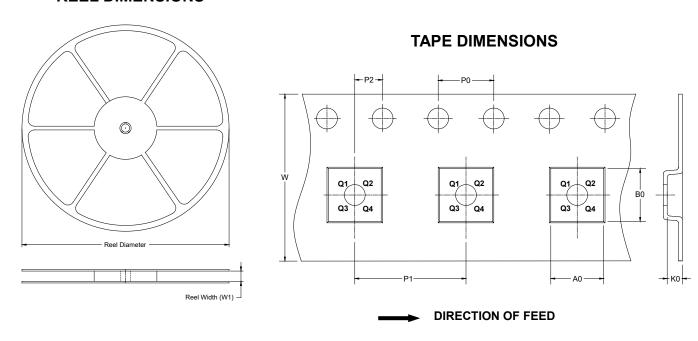
Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	0.800	1.100	0.031	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.800	1.000	0.031	0.039	
b	0.150	0.350	0.006	0.014	
С	0.080	0.220	0.003	0.009	
D	2.000	2.200	0.079	0.087	
E	1.150	1.350	0.045	0.053	
E1	2.150	2.450	0.085	0.096	
е	0.65	TYP	0.026	S TYP	
e1	1.300	1.300 BSC		BSC	
L	0.525	0.525 REF		REF	
L1	0.260	0.460	0.010	0.018	
θ	0°	8°	0°	8°	


- Body dimensions do not include mode flash or protrusion.
 This drawing is subject to change without notice.


PACKAGE OUTLINE DIMENSIONS SOT-23-5

RECOMMENDED LAND PATTERN (Unit: mm)

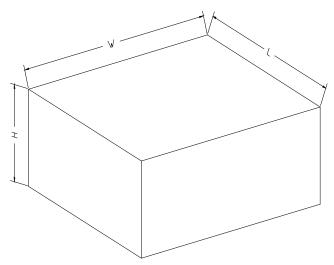
Cymphol	Dimensions In Millimeters						
Symbol	MIN	MOD	MAX				
Α	-	-	1.450				
A1	0.000	-	0.150				
A2	0.900	-	1.300				
b	0.300	0.300 -					
С	0.080	-	0.220				
D	2.750	-	3.050				
Е	1.450	-	1.750				
E1	2.600	-	3.000				
е		0.950 BSC					
e1		1.900 BSC					
L	0.300	-	0.600				
θ	0°	-	8°				
ccc		0.100					


NOTES:

- 1. This drawing is subject to change without notice.
- 2. The dimensions do not include mold flashes, protrusions or gate burrs.
- 3. Reference JEDEC MO-178.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SC70-5	7"	9.5	2.40	2.50	1.20	4.0	4.0	2.0	8.0	Q3
SOT-23-5	7"	9.5	3.20	3.20	1.40	4.0	4.0	2.0	8.0	Q3

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18