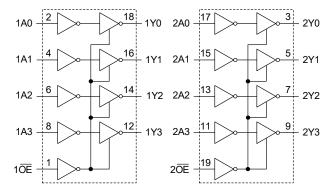


74AHC244 Octal Buffer/Line Driver with 3-State Outputs

GENERAL DESCRIPTION

The 74AHC244 is an octal buffer/line driver with 3-state outputs. The device can be used as two 4-bit buffers or one 8-bit buffer. The $1\overline{OE}$ and $2\overline{OE}$ are two output enable inputs, and each controls four of the 3-state outputs. When $n\overline{OE}$ is set high, the outputs are in high-impedance state. When $n\overline{OE}$ is set low, data transmits from the nAn inputs to the nYn outputs.


The over-voltage tolerant inputs can come up to 5.5V. With this function, this device can be used as a translator in mixed voltage environment.

The 74AHC244 is available in a Green TSSOP-20 package. It operates over an operating temperature range of -40°C to +125°C.

FEATURES

- Wide Supply Voltage Range: 2.0V to 5.5V
- Inputs Accept Voltages Higher than the Supply Voltage and up to 5.5V
- +8mA/-8mA Output Current
- All Inputs with Schmitt-Trigger
- Input Level: CMOS Level
- CMOS Low Power Dissipation
- Inputs are Over-Voltage Tolerant
- -40°C to +125°C Operating Temperature Range
- Available in a Green TSSOP-20 Package

LOGIC DIAGRAM

FUNCTION TABLE

CONTROL INPUT	INPUT	OUTPUT
nOE	nAn	nYn
L	L	L
L	Н	Н
Н	X	Z

H = High Voltage Level

L = Low Voltage Level

Z = High-Impedance State

X = Don't Care

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
74AHC244	TSSOP-20	-40°C to +125°C	74AHC244XTS20G/TR	00ZTS20 XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

<u>X</u>	ΧХ	X	X			
				Ver	ndor C	Code
				-	~	

Trace Code

— Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Range, V _{CC} 0.5	√ to 7.0V
Input Voltage Range, VI (1)	√ to 7.0V
Output Voltage Range, $V_0^{(1)}$ -0.5V to MIN(7.0V, V_{CH}	c + 0.5V)
Input Clamp Current, I _{IK} (VI < -0.5V)	- 20mA
Output Clamp Current, I_{OK} (V _O < -0.5V or V _O > V _{CC} +	- 0.5V)
	±20mA
Continuous Output Current, I_0 (V ₀ = -0.5V to V _{CC} + 0.5	V)
	±25mA
Continuous Current through V _{CC} or GND	±75mA
Junction Temperature ⁽²⁾	+150°C
Storage Temperature Range65°C to	o +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
НВМ	.±4000V
CDM	.±1000V

NOTES:

1. The input and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.

2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range, V _{CC}	2.0V to 5.5V
Input Voltage Range, V _I	0V to 5.5V
Output Voltage Range, Vo	0V to V_{CC}
Output Current, Io	±8mA
Input Transition Rise or Fall Rate, $\Delta t / \Delta V$	
V _{CC} = 3.3V ± 0.3V	100ns/V (MAX)
$V_{CC} = 5.0V \pm 0.5V$	20ns/V (MAX)

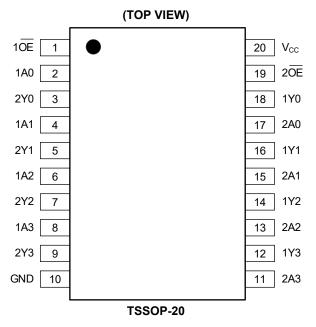
Operating Temperature Range.....-40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.


DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

Octal Buffer/Line Driver with 3-State Outputs

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
1, 19	$1\overline{OE}, 2\overline{OE}$	Output Enable Inputs (Active-Low).
2, 4, 6, 8	1A0, 1A1, 1A2, 1A3	Data Inputs.
18, 16, 14, 12	1Y0, 1Y1, 1Y2, 1Y3	Data Outputs.
10	GND	Ground.
17, 15, 13, 11	2A0, 2A1, 2A2, 2A3	Data Inputs.
3, 5, 7, 9	2Y0, 2Y1, 2Y2, 2Y3	Data Outputs.
20	V _{CC}	Supply Voltage.

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	ТҮР	MAX	UNITS	
		V _{CC} = 2.0V	Full	1.5				
High-Level Input Voltage	V _{IH}	V _{CC} = 3.0V	Full	2.1			V	
		V _{CC} = 5.5V	Full	3.85				
		V _{CC} = 2.0V	Full			0.5		
Low-Level Input Voltage	V _{IL}	V _{CC} = 3.0V	Full			0.9	V	
		$V_{CC} = 5.5V$	Full			1.65		
		V_{CC} = 2.0V, I_{OH} = -50 μ A	Full	1.9	1.995			
		V _{CC} = 3.0V, I _{OH} = -50µA	Full	2.9	2.995			
High-Level Output Voltage	V _{он}	V _{CC} = 4.5V, I _{OH} = -50µA	Full	4.4	4.495		V	
		V _{CC} = 3.0V, I _{OH} = -4mA	Full	2.6	2.8			
		V _{CC} = 4.5V, I _{OH} = -8mA	Full	4.0	4.25			
		$V_{CC} = 2.0V, I_{OL} = 50\mu A$	Full		0.005	0.1		
		V _{CC} = 3.0V, I _{OL} = 50µA Full			0.005	0.1		
Low-Level Output Voltage	V _{OL}	$V_{CC} = 4.5V, I_{OL} = 50\mu A$	Full		0.005	0.1	V	
		$V_{CC} = 3.0V, I_{OL} = 4mA$	Full		0.15	0.4		
		$V_{CC} = 4.5V, I_{OL} = 8mA$	Full		0.25	0.5		
Input Leakage Current	lı –	V_{CC} = 0V to 5.5V, V _I = 5.5V or GND	Full		±0.02	±1	μA	
Off-State Output Current	l _{oz}	V_{CC} = 5.5V, V_{I} = V_{IH} or $V_{\text{IL}},$ V_{O} = V_{CC} or GND	Full		±0.02	±2	μA	
Supply Current	I _{cc}	V_{CC} = 5.5V, V_I = V_{CC} or GND, I_O = 0A	Full		0.02	10	μA	
Input Capacitance	Cı		+25°C		5.0		pF	
Output Capacitance	Co		+25°C		5.0		pF	

DYNAMIC CHARACTERISTICS

(See Figure 1 for test circuit. Full = -40°C to +125°C, all typical values are measured at V_{CC} = 3.3V or 5V, and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		TEMP	MIN ⁽¹⁾	TYP	MAX ⁽¹⁾	UNITS
			C _L = 15pF	Full	1.0	4.0	10.0	
Propagation Delay ⁽²⁾		nAn to nYn, V_{CC} = 3.0V to 3.6V	C _L = 50pF	Full	1.0	5.5	13.5	
Propagation Delay	t _{PD}		C _L = 15pF	Full	1.0	3.5	6.5	ns
		nAn to nYn, V_{CC} = 4.5V to 5.5V	C _L = 50pF	Full	1.0	4.0	8.5	1
		$n\overline{OE}$ to nYn, V _{CC} = 3.0V to 3.6V	C _L = 15pF	Full	1.0	6.5	12.5	- ns
			C _L = 50pF	Full	1.0	8.0	18.0	
Enable Time ⁽²⁾	t _{EN}	$n\overline{OE}$ to nYn, V _{cc} = 4.5V to 5.5V	C _L = 15pF	Full	1.0	5.0	8.5	
			C _L = 50pF	Full	1.0	6.0	12.0	
		$n\overline{OE}$ to nYn, V _{CC} = 3.0V to 3.6V	C _L = 15pF	Full	1.0	7.0	11.0	
Disable Time ⁽²⁾			C _L = 50pF	Full	1.0	11.5	16.0	ns
Disable Time V	t _{DIS}		C _L = 15pF	Full	1.0	5.0	8.5	
		$n\overline{OE}$ to nYn, V _{CC} = 4.5V to 5.5V	C _L = 50pF	Full	1.0	6.0	10.5	
Power Dissipation Capacitance ⁽³⁾	C _{PD}	C_L = 50pF, f _i = 1MHz, V _i = GND to	V _{cc}	+25°C		11.0		pF

NOTES:

1. Specified by design and characterization, not production tested.

2. t_{PD} is the same as t_{PLH} and t_{PHL} . t_{DIS} is the same as t_{PLZ} and t_{PHZ} . t_{EN} is the same as t_{PZL} and t_{PZH} .

3. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

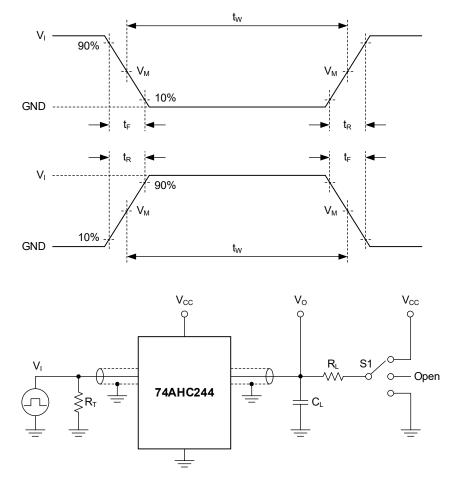
 $\mathsf{P}_{\mathsf{D}} = \mathsf{C}_{\mathsf{PD}} \times {\mathsf{V}_{\mathsf{CC}}}^2 \times \mathsf{f}_{\mathsf{i}} \times \mathsf{N} + \Sigma (\mathsf{C}_{\mathsf{L}} \times {\mathsf{V}_{\mathsf{CC}}}^2 \times \mathsf{f}_{\mathsf{o}})$

where:

 f_i = Input frequency in MHz.

 f_o = Output frequency in MHz.

C_L = Output load capacitance in pF.


V_{CC} = Supply voltage in Volts.

N = Number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = Sum of outputs.

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

R_L: Load resistance.

CL: Load capacitance (includes jig and probe).

 R_T : Termination resistance (equals to output impedance Z_0 of the pulse generator).

S1: Test selection switch.

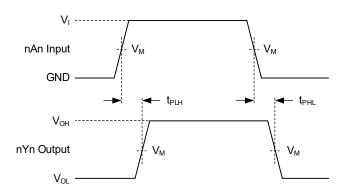
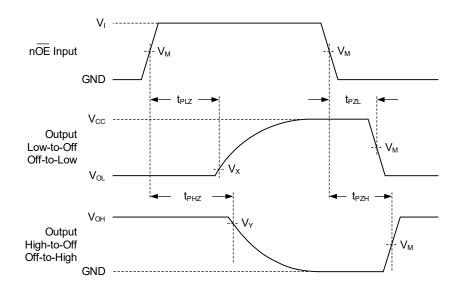

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

SUPPLY VOLTAGE	INF	TUT	LO	AD		S1 POSITION	l
Vcc	Vı	t _R , t _F	C∟	R∟	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
2.0V to 5.5V	V _{CC}	≤ 3.0ns	15pF, 50pF	1kΩ	Open	GND	V _{cc}

WAVEFORMS



Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 2. Input (nAn) to Output (nYn) Propagation Delay Times

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. Enable and Disable Times

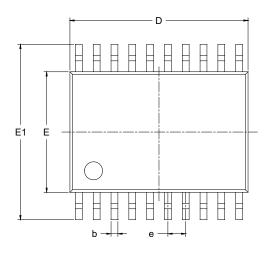
Table 2. Measurement Points

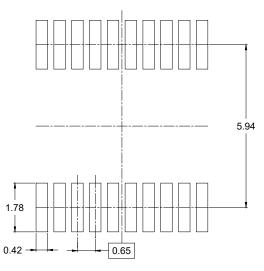
SUPPLY VOLTAGE	INPUT				
Vcc	VI	V _M ⁽¹⁾	V _M	Vx	V _Y
2.0V to 5.5V	V _{CC}	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	V _{OL} + 0.3V	V _{OH} - 0.3V

NOTE:

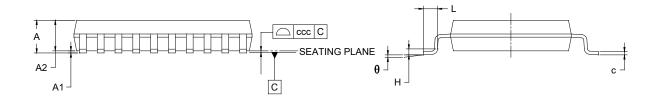
1. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 3.0ns.

REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Original (JANUARY 2025) to REV.A

Changes from Original (JANUARY 2025) to REV.A	Page
Changed from product preview to production data	All

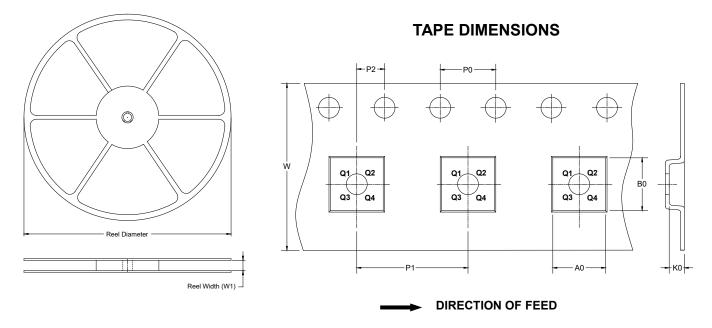


PACKAGE OUTLINE DIMENSIONS TSSOP-20

RECOMMENDED LAND PATTERN (Unit: mm)

Cumhal	Diı	Dimensions In Millimeters						
Symbol	MIN	NOM	МАХ					
A	-	-	1.200					
A1	0.050	-	0.150					
A2	0.800	-	1.050					
b	0.190	-	0.300					
С	0.090	-	0.200					
D	6.400	-	6.600					
E	4.300	-	4.500					
E1	6.200	-	6.600					
e		0.650 BSC						
L	0.450	-	0.750					
Н		0.250 TYP						
θ	0°	-	8°					
ссс		0.100						

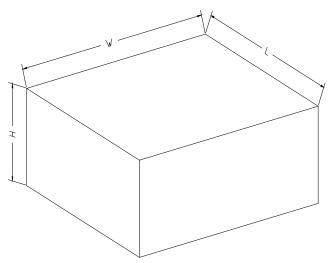
NOTES:


1. Body dimensions do not include mode flash or protrusion.

Dealy amongoing the model m Model mode Model mo

TAPE AND REEL INFORMATION

REEL DIMENSIONS


NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP-20	13″	16.4	6.80	6.90	1.50	4.0	8.0	2.0	16.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	DD0002