

SGM8544C 1.1MHz, 46µA, Rail-to-Rail I/O CMOS Operational Amplifier

GENERAL DESCRIPTION

The SGM8544C is a quad, low cost, voltage feedback amplifier. The device can operate from 2.1V to 5.5V single supply, while consuming only 46µA quiescent current per amplifier. It provides rail-to-rail input with a wide input common mode voltage range and rail-to-rail output voltage swing. This feature makes SGM8544C appropriate for buffering ASIC.

The SGM8544C offers a gain-bandwidth product of 1.1MHz and an ultra-low input bias current of 0.5pA. It is well suited for piezoelectric sensors, integrators and photodiode amplifiers.

The SGM8544C is designed into a wide range of applications, such as battery-powered instrumentation, safety monitoring, portable systems, and transducer interface circuits in low power systems.

The SGM8544C is available in a Green TSSOP-14 package. It is specified over the extended industrial temperature range (-40°C to +125°C).

FEATURES

- Low Cost
- Input Offset Voltage: 0.8mV (TYP)
- Ultra-Low Input Bias Current: 0.5pA
- Unity-Gain Stable
- Gain-Bandwidth Product: 1.1MHz
- Rail-to-Rail Input and Output
- Supply Voltage Range: 2.1V to 5.5V
- Input Voltage Range:
 -0.1V to 5.6V with V_S = 5.5V
- Low Supply Current: 46µA/Amplifier
- -40°C to +125°C Operating Temperature Range
- Available in a Green TSSOP-14 Package

APPLICATIONS

ASIC Input or Output Amplifiers Piezoelectric Transducer Amplifiers Battery-Powered Equipment Portable Equipment Sensor Interfaces Medical Instrumentation Mobile Communications Audio Outputs Smoke Detectors Notebook PCs PCMCIA Cards Mobile Telephones

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION	
SGM8544C	TSSOP-14	-40°C to +125°C	SGM8544CXTS14G/TR	SGM8544 XTS14 XXXXX	Tape and Reel, 4000	

MARKING INFORMATION

NOTE: XXXXX = Date Code and Vendor Code.

XXXXX

Vendor Code

- Date Code - Week

Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

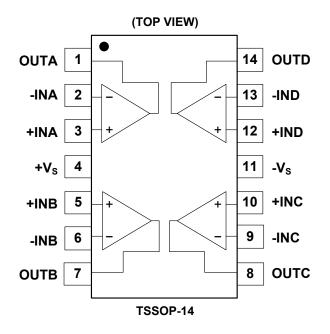
Supply Voltage, +V _S to -V _S	6V
Input Common Mode Voltage Range	
(-V _S) - 0.3	V to (+V _S) + 0.3V
Junction Temperature	+150°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	4000V
MM	400V

RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range-40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

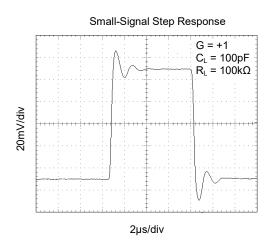

ESD SENSITIVITY CAUTION

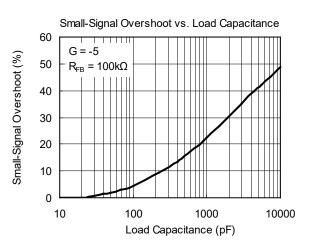
This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

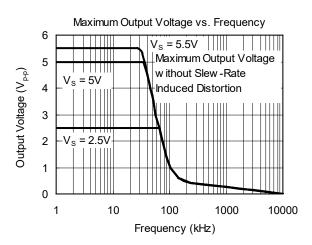
DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

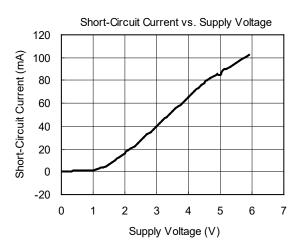

ELECTRICAL CHARACTERISTICS


(At V_S = +5V, R_L = 100k Ω connected to V_S/2 and V_{OUT} = V_S/2, unless otherwise noted.)

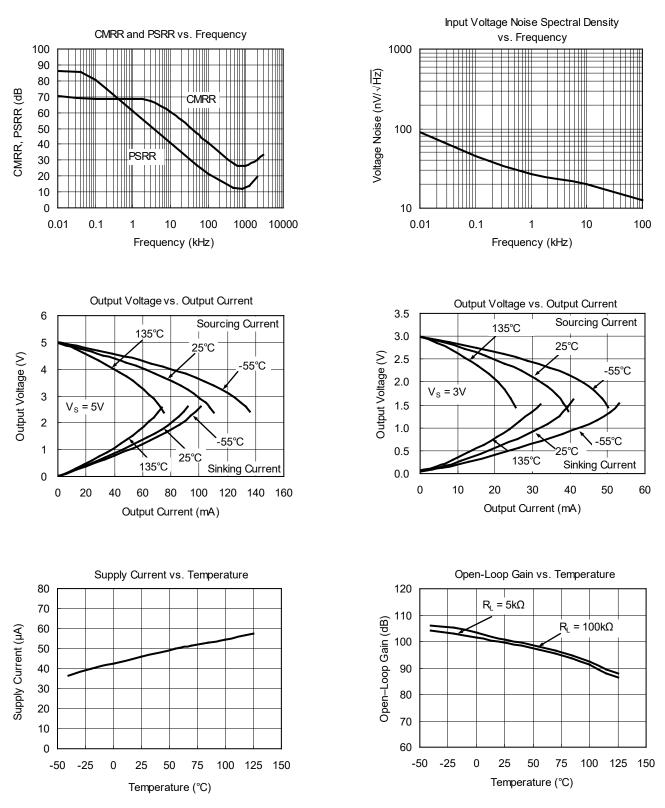

			SGM8544C					
PARAMETER	SYMBOL	CONDITIONS	ТҮР	MIN/MAX OVER TEMPERATURE				
PARAWEIER	STWBOL	CONDITIONS	+25℃	+25°C	-40°C to +125°C	UNITS	MIN/ MAX	
Input Characteristics								
Input Offset Voltage	Vos	$V_{CM} = V_S/2$	0.8	3.5		mV	MAX	
Input Bias Current	Ι _Β		0.5			pА	TYP	
Input Offset Current	I _{os}		0.5			pА	TYP	
Input Common Mode Voltage Range	V _{CM}	V _S = 5.5V	-0.1 to +5.6			V	TYP	
Common Modo Poinction Potio	CMRR	$V_{\rm S}$ = 5.5V, $V_{\rm CM}$ = -0.1V to +4V	87	71	69	dB	MIN	
Common Mode Rejection Ratio	CIVIRR	$V_{\rm S}$ = 5.5V, $V_{\rm CM}$ = -0.1V to +5.6V	80	60	56	uБ	IVIIIN	
Open Leen Veltage Cain	٨	$R_L = 5k\Omega$, $V_O = +0.1V$ to $+4.9V$	98	80	73	dB	MIN	
Open-Loop Voltage Gain	A _{OL}	$R_L = 100k\Omega, V_O = +0.035V \text{ to } +4.965V$	105	85	74	uБ	IVIIIN	
Input Offset Voltage Drift	$\Delta V_{OS}/\Delta T$		2.7			µV/°C	TYP	
Output Characteristics								
	V _{OH}	R _L = 100kΩ	4.997	4.980	4.970	V	MIN	
	V _{OL}	R _L = 100kΩ	5	20	30	mV	MAX	
Output Voltage Swing from Rail	V _{OH}	R _L = 10kΩ	4.992	4.970	4.960	V	MIN	
	V _{OL}	R _L = 10kΩ	8	30	40	mV	MAX	
	ISOURCE	D 400 to 1/ /0	85	60	45	mA	N AIN I	
Output Current	I _{SINK}	$R_L = 10\Omega$ to $V_S/2$	75	60	45		MIN	
Power Supply		•						
				2.1	2.5	V	MIN	
Operating Voltage Range				5.5	5.5	V	MAX	
Power Supply Rejection Ratio	PSRR	$V_{\rm S}$ = +2.5V to +5.5V, $V_{\rm CM}$ = +0.5V	87	70	64	dB	MIN	
Quiescent Current/Channel	lq		46	69	89	μA	MAX	
Dynamic Performance (C _L = 100pF)		•						
Gain-Bandwidth Product	GBP		1.1			MHz	TYP	
Slew Rate	SR	G = +1, 2V Output Step	0.52			V/µs	TYP	
Settling Time to 0.1%	ts	G = +1, 2V Output Step	5.3			μs	TYP	
Overload Recovery Time		V _{IN} ·Gain = V _S	2.6			μs	TYP	
Noise Performance	•	•			•	•	•	
Malta na Naja a Danajta	_	f = 1kHz	27			nV/ _{√Hz}	TYP	
Voltage Noise Density	en	f = 10kHz	20			nV/ _{√Hz}	TYP	

TYPICAL PERFORMANCE CHARACTERISTICS

At T_A = +25°C, V_S = +5V, and R_L = 100k Ω connected to $V_S/2$, unless otherwise noted.



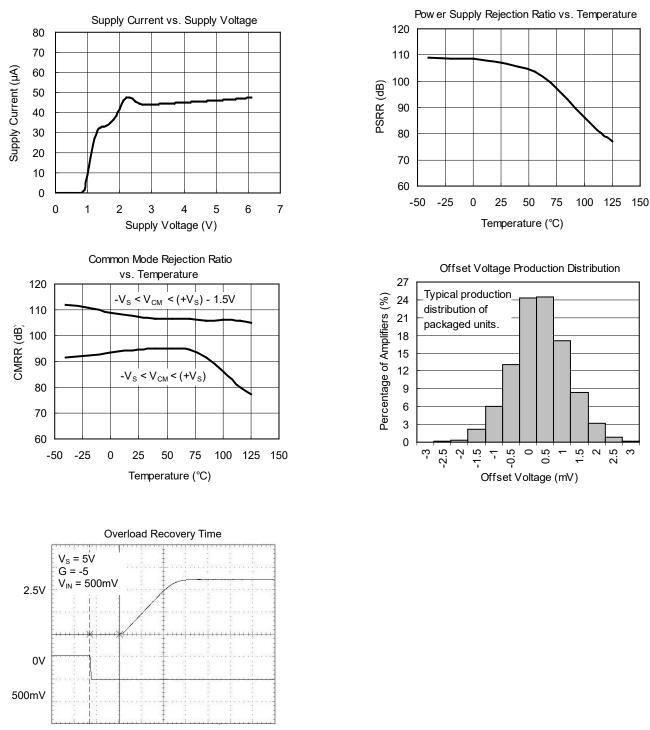
Small-Signal Overshoot vs. Load Capacitance 60 G = -1 Small-Signal Overshoot (%) 50 $R_{FB} = 10k\Omega$ 40 30 G = +1 $R_L = 100 k\Omega$ G = -1 20 $R_{FB} = 5k\Omega$ 10 0 10 100 1000 10000 Load Capacitance (pF)



SG Micro Corp

SGMICRO www.sg-micro.com

TYPICAL PERFORMANCE CHARACTERISTICS (continued)


At T_A = +25°C, V_S = +5V, and R_L = 100k Ω connected to $V_S/2$, unless otherwise noted.

SG Micro Corp

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At T_A = +25°C, V_S = +5V, and R_L = 100k Ω connected to $V_S/2$, unless otherwise noted.

Time (2µs/div)

APPLICATION INFORMATION

Rail-to-Rail Input

When SGM8544C works at the power supply between 2.1V and 5.5V, the input common mode voltage range is from $(-V_S) - 0.1V$ to $(+V_S) + 0.1V$. In Figure 1, the ESD diodes between the inputs and the power supply rails will clamp the input voltage not to exceed the rails.

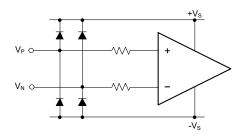


Figure 1. Input Equivalent Circuit

Rail-to-Rail Output

The SGM8544C supports rail-to-rail output operation. In single power supply application, for example, when +V_S = 5V, -V_S = GND, 100k Ω load resistor is tied from OUT pin to V_S/2, the typical output swing range is from 0.005V to 4.997V.

Driving Capacitive Loads

The SGM8544C is designed for unity-gain stable for capacitive load up to 250pF. If greater capacitive load must be driven in application, the circuit in Figure 2 can be used. In this circuit, the IR drop voltage generated by $R_{\rm ISO}$ is compensated by feedback loop.

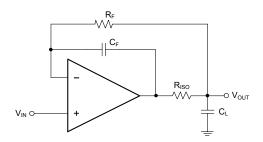


Figure 2. Circuit to Drive Heavy Capacitive Load

Power Supply Decoupling and Layout

A clean and low noise power supply is very important in amplifier circuit design, besides of input signal noise, the power supply is one of important source of noise to the amplifiers through $+V_S$ and $-V_S$ pins. Power supply bypassing is an effective method to clear up the noise at power supply, and the low impedance path to ground of decoupling capacitor will bypass the noise to GND. In application, 10μ F ceramic capacitor paralleled with 0.1μ F or 0.01μ F ceramic capacitor is used in Figure 3. The ceramic capacitors should be placed as close as possible to $+V_S$ and $-V_S$ power supply pins.

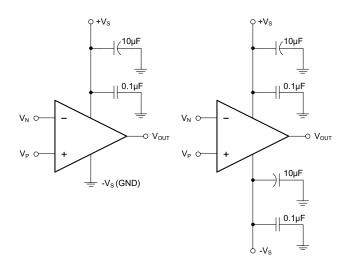


Figure 3. Amplifier Power Supply Bypassing

APPLICATION INFORMATION (continued)

Typical Application Circuits

Difference Amplifier

The circuit in Figure 4 is a design example of classical difference amplifier. If $R_4/R_3 = R_2/R_1$, then $V_{OUT} = (V_P - V_N) \times R_2/R_1 + V_{REF}$.

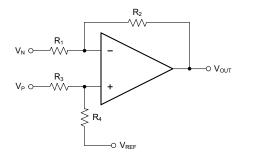


Figure 4. Difference Amplifier

High Input Impedance Difference Amplifier

The circuit in Figure 5 is a design example of high input impedance difference amplifier, the added amplifiers at the input are used to increase the input impedance and eliminate drawback of low input impedance in Figure 4.

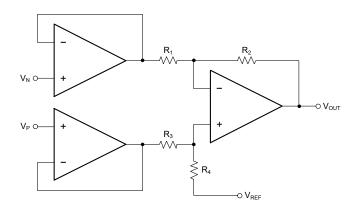


Figure 5. High Input Impedance Difference Amplifier

Active Low-Pass Filter

The circuit in Figure 6 is a design example of active low-pass filter, the DC gain is equal to $-R_2/R_1$ and the -3dB corner frequency is equal to $1/2\pi R_2C$. In this design, the filter bandwidth must be less than the bandwidth of the amplifier, the resistor values must be selected as low as possible to reduce ringing or oscillation generated by the parasitic parameters in PCB layout.

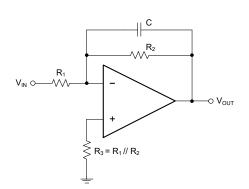
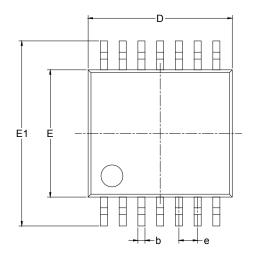


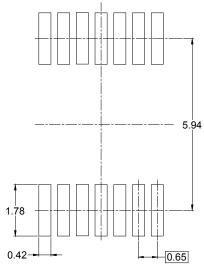
Figure 6. Active Low-Pass Filter

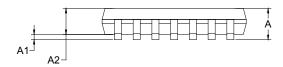
Page

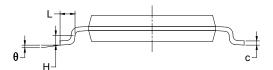
REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

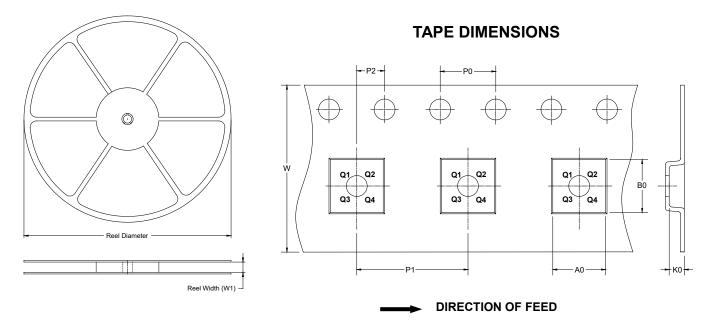

Changes from Original (NOVEMBER 2017) to REV.A


Changed from product preview to production dataAll
--


PACKAGE OUTLINE DIMENSIONS


TSSOP-14

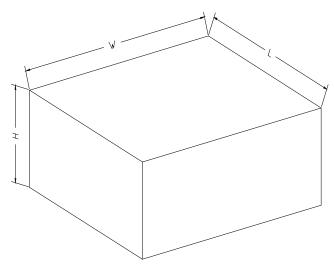
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A		1.200		0.047	
A1	0.050	0.150	0.002	0.006	
A2	0.800	1.050	0.031	0.041	
b	0.190	0.300	0.007	0.012	
С	0.090	0.200	0.004	0.008	
D	4.860	5.100	0.191	0.201	
E	4.300	4.500	0.169	0.177	
E1	6.250	6.550	0.246	0.258	
е	0.650) BSC	0.026	BSC	
L	0.500	0.700	0.02	0.028	
Н	0.25	TYP	0.01	TYP	
θ	1° 7°		1°	7°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP-14	13″	12.4	6.95	5.60	1.20	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton		
13″	386	280	370	5	DD0002	

