

74LVC374A Octal D-Type Positive Edge-Triggered Flip-Flop with 3-State Outputs

GENERAL DESCRIPTION

The 74LVC374A is an 8-bit D-type positive edge-triggered flip-flop with 3-state outputs that is designed for 1.2V to 3.6V V_{CC} operation.

The device is provided with a clock (CP) input and an output enable (\overline{OE}) input. When data at the Dn inputs suffices for setup and hold time purposes, data can be moved to the Qn outputs on the low-to-high clock transition. When \overline{OE} is high, all outputs are in high-impedance state. \overline{OE} has no influence on the state of the flip-flops. Both 3.3V and 5V devices can drive inputs, enabling this device to operate as translator in a mixed 3.3V and 5V system environment. All inputs support Schmitt-trigger action, which can allow the circuit to tolerate slower input rise and fall times.

This device is highly suitable for partial power-down applications by using power-off leakage current (I_{OFF}) circuit. When the device is powered down, the outputs are disabled, and the current backflow can be prevented from passing through the device.

The 74LVC374A is available in Green SOIC-20 and TSSOP-20 packages. It operates over an operating temperature range of -40°C to +125°C.

FEATURES

- Wide Operating Voltage Range: 1.2V to 3.6V
- Input and Output Interface Capability to 5V System Environment
- +24mA/-24mA Output Current
- CMOS Low Power Dissipation
- Support Partial Power-Down Mode
- Outputs in High-Impedance State when V_{cc} = 0V
- -40°C to +125°C Operating Temperature Range
- Available in Green SOIC-20 and TSSOP-20 Packages

APPLICATIONS

Electrical Appliances Computing Equipment

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
74LVC374A	SOIC-20	-40℃ to +125℃	74LVC374AXS20G/TR	74LVC374AXS20 XXXXX	Tape and Reel, 1500
74LVC374A	TSSOP-20	-40°C to +125°C	74LVC374AXTS20G/TR	0J9XTS20 XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

└── Vendor Code ──── Trace Code ──── Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Supply Voltage Range, V_{CC} 0.5V to 6.5V
Input Voltage Range, V ₁ ⁽²⁾ 0.5V to 6.5V
Output Voltage Range, V _O ⁽²⁾
High-State or Low-State0.5V to MIN(6.5V, V_{CC} + 0.5V)
High-Impedance or Power-Off State0.5V to 6.5V
Input Clamp Current, I_{IK} (V _I < 0V)50mA
Output Clamp Current, I _{OK} (V _O < 0V)50mA
Continuous Output Current, I_0 (V ₀ = 0V to V _{CC})±50mA
Continuous Current through V _{CC} or GND±100mA
Junction Temperature ⁽³⁾ +150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM
CDM

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range, $V_{CC}1.65V$ to $3.6V$	/
Function Supply Voltage Range, V _{CC} 1.2V to 3.6V	/
Input Voltage Range, V ₁ 0V to 5.5V	/
Output Voltage Range, V _O	
High-State or Low-State	С
High-Impedance or Power-Off State0V to 5.5V	/
Output Current, I _O ±24mA	٩
Input Transition Rise or Fall Rate, $\Delta t / \Delta V$	
V _{CC} = 1.65V to 2.7V 20ns/V (MAX))
V _{CC} = 2.7V to 3.6V 10ns/V (MAX))
Operating Temperature Range40°C to +125°C)

OVERSTRESS CAUTION

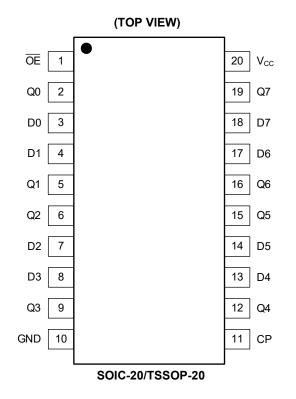
1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

2. The input and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.

3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

ESD SENSITIVITY CAUTION

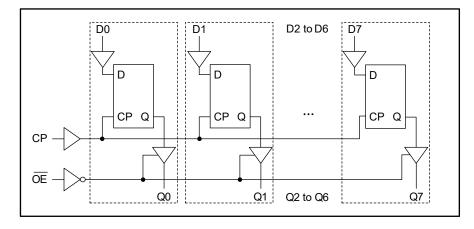
This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.


DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

Octal D-Type Positive Edge-Triggered Flip-Flop with 3-State Outputs

PIN CONFIGURATIONS



PIN DESCRIPTION

PIN	NAME	FUNCTION
1	ŌĒ	Output Enable Input (Active-Low).
2, 5, 6, 9, 12, 15, 16, 19	Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7	Outputs.
3, 4, 7, 8, 13, 14, 17, 18	D0, D1, D2, D3, D4, D5, D6, D7	Data Inputs.
10	GND	Ground.
11	CP	Clock Input (Low-to-High Clock Transition, Edge-Triggered).
20	V _{CC}	Power Supply.

LOGIC DIAGRAM

FUNCTION TABLE

	INPUT			OUTPUT
OE	СР	Dn	FLIP-FLOPS	Qn
L	↑	Ι	L	L
L	Ť	h	Н	Н
Н	Ť	I	L	Z
Н	↑	h	Н	Z

H = High Voltage Level

h = High Voltage Level One Setup Time before Clock Rising Edge \uparrow

L = Low Voltage Level

I = Low Voltage Level One Setup Time before Clock Rising Edge \uparrow

Z = High-Impedance State

 \uparrow = Low-to-High Clock Transition

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	ТҮР	MAX	UNITS	
		V _{CC} = 1.2V	Full	1.08				
High-Level Input Voltage	N	V _{CC} = 1.65V to 1.95V	Full	$0.65 \times V_{CC}$			V	
	VIH	V _{CC} = 2.3V to 2.7V	Full	1.7			v	
		V _{CC} = 2.7V to 3.6V	Full	2.0				
		V _{CC} = 1.2V	Full			0.12		
1		V _{CC} = 1.65V to 1.95V	Full			0.35 × V _{CC}		
Low-Level Input Voltage	VIL	V _{CC} = 2.3V to 2.7V	Full			0.7	V	
		V _{CC} = 2.7V to 3.6V	Full			0.8		
		V _{CC} = 1.65V to 3.6V, I _{OH} = -100µA	Full	V _{CC} - 0.3	V _{CC} - 0.005			
		V _{CC} = 1.65V, I _{OH} = -4mA	Full	1.05	1.50		V	
	V _{он}	V _{CC} = 2.3V, I _{OH} = -8mA	Full	1.65	2.09			
High-Level Output Voltage		V _{CC} = 2.7V, I _{OH} = -12mA	Full	2.05	2.42		v	
		V _{CC} = 3.0V, I _{OH} = -18mA	Full	2.25	2.60			
		V _{CC} = 3.0V, I _{OH} = -24mA	Full	2.00	2.45			
		V _{CC} = 1.65V to 3.6V, I _{OL} = 100µA	Full		0.005	0.30		
		V _{CC} = 1.65V, I _{OL} = 4mA	Full		0.10	0.65		
Low-Level Output Voltage	V _{OL}	V _{CC} = 2.3V, I _{OL} = 8mA	Full		0.16	0.80	V	
		V _{CC} = 2.7V, I _{OL} = 12mA	Full		0.23	0.60		
		V _{CC} = 3.0V, I _{OL} = 24mA	Full		0.45	0.80		
Input Leakage Current	l _i	V _{CC} = 3.6V, V _I = 5.5V or GND	Full		±0.1	±5	μA	
Off-State Output Current	I _{oz}	V_{CC} = 3.6V, V_{I} = V_{IH} or V_{IL} , V_{O} = 5.5V or GND	Full		±0.1	±5	μA	
Power-Off Leakage Current	I _{OFF}	$V_{CC} = 0V, V_1 \text{ or } V_0 = 5.5V$	Full		±0.1	±5	μA	
Supply Current	I _{cc}	V_{CC} = 3.6V, V_{I} = V_{CC} or GND, I_{O} = 0A	Full		0.4	20	μA	
Additional Supply Current	Δl _{cc}	Per input pin, V_{CC} = 2.7 V to 3.6V, V _I = V _{CC} - 0.6V, I _O = 0A	Full		2.0	20	μA	
Input Capacitance	Cı	V_{CC} = 0V to 3.6V, V_I = GND to V_{CC}	+25°C		3.5		pF	

DYNAMIC CHARACTERISTICS

(See Figure 1 for test circuit. Full = -40°C to +125°C, all typical values are measured at T_A = +25°C and V_{CC} = 1.2V, 1.8V, 2.5V, 2.7V and 3.3V respectively, unless otherwise noted.)

PARAMETER	SYMBOL	COI	NDITIONS	TEMP	MIN ⁽¹⁾	TYP	MAX ⁽¹⁾	UNITS
			V _{CC} = 1.2V	+25°C		18.0		
			V _{CC} = 1.65V to 1.95V	Full	0.5	6.5	18.8	
Propagation Delay ⁽²⁾	t _{PD}	CP to Qn, see Figure 2	V _{CC} = 2.3V to 2.7V	Full	0.5	4.5	9.7	ns
		See Figure 2	V _{CC} = 2.7V	Full	0.5	4.5	10.0	
			V _{CC} = 3.0V to 3.6V	Full	0.5	4.3	9.0	
			V _{CC} = 1.2V	+25°C		30.0		
			V _{CC} = 1.65V to 1.95V	Full	0.5	9.0	21.0	
Enable Time ⁽²⁾	t _{EN}	OE to Qn, see Figure 3	V _{CC} = 2.3V to 2.7V	Full	0.5	5.8	10.8	ns
		See Figure 0	V _{CC} = 2.7V	Full	0.5	5.7	11.0	
			V _{CC} = 3.0V to 3.6V	Full	0.5	5.0	9.5	
			V _{CC} = 1.2V	+25°C		10.0		
	t _{DIS}	OE to Qn, see Figure 3	V _{CC} = 1.65V to 1.95V	Full	0.5	4.9	12.0	ns
Disable Time ⁽²⁾			V _{CC} = 2.3V to 2.7V	Full	0.5	2.7	7.0	
			V _{CC} = 2.7V	Full	0.5	2.8	9.0	
			V _{CC} = 3.0V to 3.6V	Full	0.5	2.8	7.5	
			V _{CC} = 1.65V to 1.95V	Full	5.0			ns
		CP high or low,	V _{CC} = 2.3V to 2.7V	Full	4.5			
Pulse Width	t _w	see Figure 2	V _{CC} = 2.7V	Full	4.5			
			V _{CC} = 3.0V to 3.6V	Full	4.5			
			V _{CC} = 1.65V to 1.95V	Full	4.0			
		Dn to CP,	V _{CC} = 2.3V to 2.7V	Full	3.0			
Setup Time	t _{su}	see Figure 4	V _{CC} = 2.7V	Full	2.0			ns
			V _{CC} = 3.0V to 3.6V	Full	2.0			
			V _{CC} = 1.65V to 1.95V	Full	3.0			
Lield Time		Dn to CP,	V _{CC} = 2.3V to 2.7V	Full	2.0			
Hold Time	t _H	see Figure 4	V _{CC} = 2.7V	Full	1.5			ns
			V _{CC} = 3.0V to 3.6V	Full	1.5			
			V _{CC} = 1.65V to 1.95V	+25°C		18.0		
Power Dissipation Capacitance ⁽³⁾	C _{PD}	Per flip-flop, $V_1 = GND$ to V_{CC}	V_{CC} = 2.3V to 2.7V	+25°C		18.0		pF
Capaonanoo			V _{CC} = 3.0V to 3.6V	+25°C		18.0		1

NOTES:

1. Specified by design and characterization, not production tested.

2. t_{PD} is the same as t_{PLH} and t_{PHL} . t_{EN} is the same as t_{PZH} and t_{PZL} . t_{DIS} is the same as t_{PLZ} and t_{PHZ} .

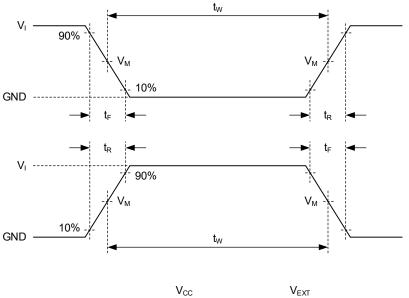
3. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

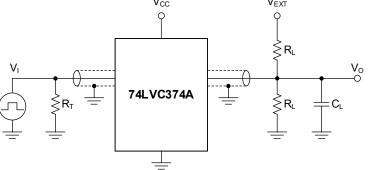
 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o})$

where:

 f_i = Input frequency in MHz.

f_o = Output frequency in MHz.


 C_L = Output load capacitance in pF.


V_{CC} = Supply voltage in Volts.

N = Number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = Sum of the outputs.

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

R_L: Load resistance.

C_L: Load capacitance (includes jig and probe).

 R_T : Termination resistance (equals to output impedance Z_0 of the pulse generator).

 V_{EXT} : External voltage is used to measure switching time.

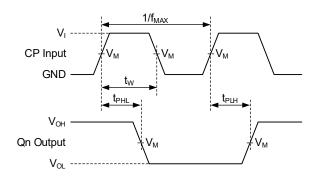
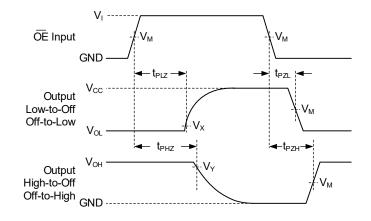

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

SUPPLY VOLTAGE	INPUT		LOAD		V _{EXT}		
Vcc	VI	t _R , t _F	C∟	R∟	t _{PLH} , t _{PHL}	t _{PLZ} , t _{PZL}	t _{PHZ} , t _{PZH}
1.2V	V _{CC}	≤ 2.0ns	30pF	1kΩ	Open	$2 \times V_{CC}$	GND
1.65V to 1.95V	V _{CC}	≤ 2.0ns	30pF	1kΩ	Open	$2 \times V_{CC}$	GND
2.3V to 2.7V	V _{CC}	≤ 2.0ns	30pF	500Ω	Open	$2 \times V_{CC}$	GND
2.7V	2.7V	≤ 2.5ns	50pF	500Ω	Open	$2 \times V_{CC}$	GND
3.0V to 3.6V	2.7V	≤ 2.5ns	50pF	500Ω	Open	$2 \times V_{CC}$	GND

SG Micro Corp

WAVEFORMS

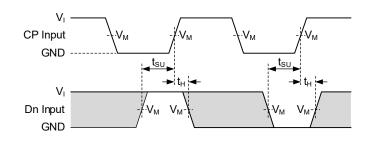


Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 2. Clock Input CP to Output Qn Propagation Delay Times and Pulse Width



Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. Enable and Disable Times

Test conditions are given in Table 1.

Measurement points are given in Table 2.

The shaded areas refer to when the input is allowed to change for predictable output performance.

Figure 4. Data Setup and Hold Times

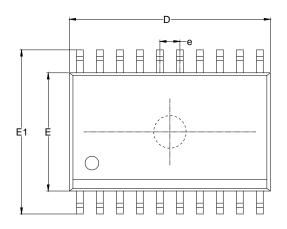
WAVEFORMS (continued)

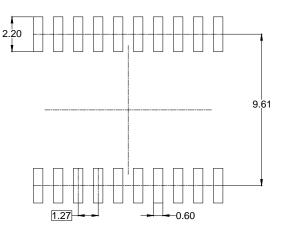
Table 2. Measurement Points

SUPPLY VOLTAGE	INPUT		OUTPUT		
V _{cc}	VI	V _M ⁽¹⁾	V _M	Vx	V _Y
1.2V	V _{CC}	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	V _{OL} + 0.15V	V _{OH} - 0.15V
1.65V to 1.95V	V _{CC}	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	V _{OL} + 0.15V	V _{OH} - 0.15V
2.3V to 2.7V	Vcc	0.5 × V _{CC}	0.5 × V _{CC}	V _{OL} + 0.15V	V _{OH} - 0.15V
2.7V	2.7V	1.5V	1.5V	V _{OL} + 0.3V	V _{OH} - 0.3V
3.0V to 3.6V	2.7V	1.5V	1.5V	V _{OL} + 0.3V	V _{OH} - 0.3V

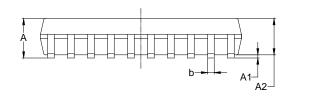
NOTE:

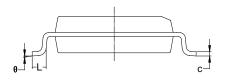
1. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 2.5ns.


REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

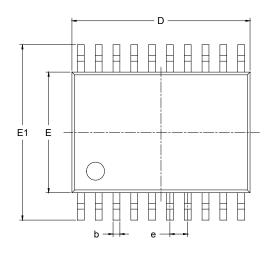
Changes from Original (MARCH 2024) to REV.A	Page
Changed from product preview to production data	All

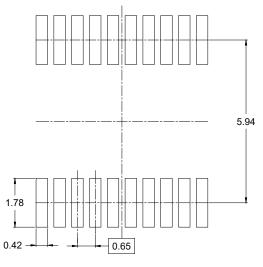


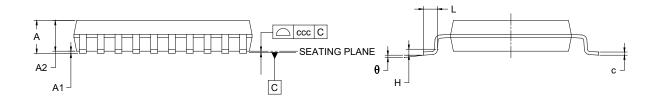

PACKAGE OUTLINE DIMENSIONS SOIC-20

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	2.350	2.650	0.093	0.104	
A1	0.100	0.300	0.004	0.012	
A2	2.100	2.500	0.083	0.098	
b	0.330	0.510	0.013	0.020	
С	0.204	0.330	0.008	0.013	
D	12.520	13.000	0.493	0.512	
E	7.400	7.600	0.291	0.299	
E1	10.210	10.610	0.402	0.418	
е	1.27 BSC		0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	


NOTES:


Body dimensions do not include mode flash or protrusion.
 This drawing is subject to change without notice.

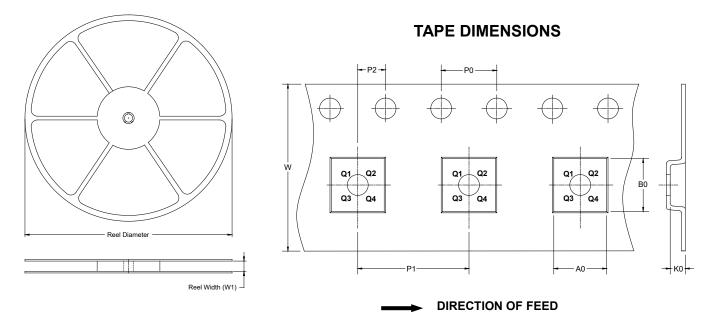

PACKAGE OUTLINE DIMENSIONS

TSSOP-20

RECOMMENDED LAND PATTERN (Unit: mm)

Currence al	Dimensions In Millimeters					
Symbol	MIN	MOD	МАХ			
A	-	-	1.200			
A1	0.050	-	0.150			
A2	0.800	-	1.050			
b	0.190	-	0.300			
с	0.090	-	0.200			
D	6.400	-	6.600			
E	4.300	-	4.500			
E1	6.200	-	6.600			
е		0.650 BSC				
L	0.450	-	0.750			
Н	0.250 TYP					
θ	0°	-	8°			
CCC		0.100				

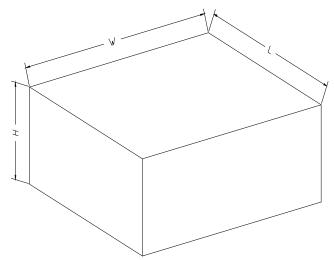
NOTES:


1. Body dimensions do not include mode flash or protrusion.

2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-153.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-20	13″	24.4	10.90	13.30	3.00	4.0	12.0	2.0	24.0	Q1
TSSOP-20	13″	16.4	6.80	6.90	1.50	4.0	8.0	2.0	16.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	DD0002

