

SGM6037 2.4V to 5.5V Input, 4A/6A Synchronous Buck Converter with I²C Interface

GENERAL DESCRIPTION

The SGM6037 is a family of high power density synchronous Buck converters which are capable of delivering up to 6A continuous output current from 2.4V to 5.5V input voltage range. The device only consumes $5\mu A$ (TYP) quiescent current.

The SGM6037 implements an I²C interface to further enhance the device's flexibility and ease of use to adapt for various application needs. The device implements auto PFM mode operation to maximize the efficiency at light load condition. At moderate to heavy load, the device automatically switches to CCM operation with a 2.3MHz (TYP) switching frequency. FPWM operation is also available via I²C programming for low output voltage ripple requirement.

The SGM6037 implements the constant on-time (COT) architecture that incorporates the benefits of fast load and line transient response and low output voltage ripple, which is beneficial for RF and noise sensitive applications.

The SGM6037 family of devices offers VID option for dynamic voltage scaling (DVS) via the I^2C interface, which can adjust the output voltage rapidly to adapt for any changes on the load side. Another variant of the device offers an active-low power good (PG) function.

The SGM6037 is available in a Green WLCSP-1.05× 1.78-15B package.

APPLICATIONS

Core Supply for FPGAs, CPUs, ASICs or GPUs DDR Memory Optical Modules Solid-State Drives

FEATURES

- 2.4V to 5.5V Input Voltage Range
- 5µA (TYP) Quiescent Current
- 2.3MHz (TYP) Switching Frequency
- 2% Output Voltage Accuracy
- $15m\Omega$ and $9.8m\Omega$ Internal Power MOSFETs
- >90% Efficiency at 0.9V Output
- COT-Control Architecture for Fast Transient Response
- Output Current:
 - SGM6037A: 4A (VSET/VID Pin)
 - SGM6037B: 4A (VSET/nPG Pin)
 - + SGM6037C: 6A (VSET/VID Pin)
 - SGM6037D: 6A (VSET/nPG Pin)
 - Selection by External Resistor
 - I²C Slave Address
 - Start-up Output Voltage
- Selection by I²C Interface
 - Output Discharge
 - Output Voltage Ramp Speed
 - Power-Save Mode or Forced PWM Mode
 - Hiccup or Latching Short-Circuit Protection
- VID Option for Dynamic Voltage Scaling (DVS)
- Thermal Warning and Shutdown
- Power Good Indicator Pin Option
- Up to 3.4Mbps I²C Compatible Interface
- Available in a Green WLCSP-1.05×1.78-15B Package

TYPICAL APPLICATION

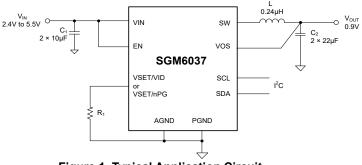


Figure 1. Typical Application Circuit

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM6037A	WLCSP-1.05×1.78-15B	-40°C to +125°C	SGM6037AXG/TR	XXXXX 6037A	Tape and Reel, 3500
SGM6037B	WLCSP-1.05×1.78-15B	-40°C to +125°C	SGM6037BXG/TR	XXXXX 6037B	Tape and Reel, 3500
SGM6037C	WLCSP-1.05×1.78-15B	-40°C to +125°C	SGM6037CXG/TR	XXXXX 6037C	Tape and Reel, 3500
SGM6037D	WLCSP-1.05×1.78-15B	-40°C to +125°C	SGM6037DXG/TR	XXXXX 6037D	Tape and Reel, 3500

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

Х	Х	Х	Х	Χ
Т				T

Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

DEVICE DESCRIPTION

Part Number	Start-up Output Voltage	Output Current	VSET/VID or VSET/nPG Pin
SGM6037A		4A	VSET/VID
SGM6037B	0.4V to 1.15V, Selectable	48	VSET/nPG
SGM6037C		64	VSET/VID
SGM6037D		6A	VSET/nPG

2.4V to 5.5V Input, 4A/6A Synchronous Buck Converter with I²C Interface

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{IN} 0.3V to 6V
EN, SDA, SCL, VOS Voltages0.3V to 6V
VSET/VID, VSET/nPG Voltages0.3V to 6V
SW, DC Voltages0.3V to V_{IN} + 0.3V
SW, AC (10ns Transient), while switching2.5V to 10V
Source Current at VSET/nPG, I _{SOURCE_nPG} 1mA
Sink Current at SDA, SCL, IsiNK_SDA/SCL
Package Thermal Resistance
WLCSP-1.05×1.78-15Β, θ _{JA} 63.2°C/W
WLCSP-1.05×1.78-15Β, θ _{JB} 16.5°C/W
WLCSP-1.05×1.78-15B, θ _{JC}
Operating Junction Temperature40°C to +150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility ^{(1) (2)}
HBM±2000V
CDM±1000V

NOTES:

1. For human body model (HBM), all pins comply with ANSI/ESDA/JEDEC JS-001 specifications.

2. For charged device model (CDM), all pins comply with ANSI/ESDA/JEDEC JS-002 specifications.

RECOMMENDED OPERATING CONDITIONS

Supply Voltage, V _{IN}	2.4V to 5.5V
Falling Transition Time at VIN Pin, t _{VIN_F} ⁽¹⁾	10mV/µs
SGM6037A/B: Output Current, I _{OUT} ⁽²⁾	0A to 4A
SGM6037C/D: Output Current, I _{OUT} ⁽³⁾	0A to 6A
Operating Junction Temperature40	°C to +125°C
Operating Ambient Temperature40	°C to +125°C

NOTES:

1. The falling slew rate of V_{IN} should be limited if V_{IN} goes below $V_{\text{UVLO}}.$

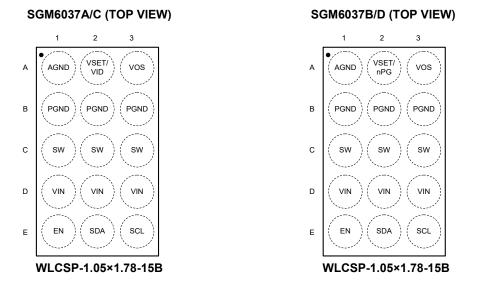
2. Lifetime is reduced when operating continuously at 4A output current and the junction temperature is higher than $+105^{\circ}C$.

3. Lifetime is reduced when operating continuously at 6A output current and the junction temperature is higher than $+85^{\circ}$ C.

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN	NAME	TYPE	FUNCTION			
A1	AGND	G	Analog Ground Pin.			
	SGM6037A/C		I ² C Address Selection and Start-up Voltage Selection Pin. An external resistor connected to			
4.2	VSET/VID	I/O	this pin programs the start-up voltage. Logic low selects the VOUT register 1 (REG0x01), and logic high selects the VOUT register 2 (REG0x02).			
A2	SGM6037B/D		I ² C Address Selection and Start-up Voltage Selection Pin. An external resistor connected to			
	VSET/nPG	I/O	this pin programs the start-up voltage. After start-up, this pin is an active-low power good pin. When output voltage is within regulation, this pin is pulled low through the external resistor.			
A3	VOS	Ρ	Output Voltage Sense Input. This pin is internally connected to the feedback loop and a MOSFET to discharge the output (V _{OUT}) when the device is disabled. Connect it with a short trace to the output capacitor.			
B1, B2, B3	PGND	G	Power Ground Pin.			
C1, C2, C3	SW	Р	Switching Node Pin. This pin is connected to the internal MOSFET switches. Connect the inductor to this terminal.			
D1, D2, D3	VIN	Ρ	Power Supply Input. Connect a ceramic capacitor (C_{IN}) close to this pin and PGND.			
E1	EN	I	Device Enable Pin. Logic high on this pin enables the device, and logic low on this pin disables the device. Do not leave it floating.			
E2	SDA	I/O	I ² C Bus Data Signal. Do not leave it floating. Connect it to AGND if not used.			
E3	SCL	I	I ² C Bus Clock Signal. Do not leave it floating. Connect it to AGND if not used.			

NOTE: I = input, O = output, I/O = input/output, P = power, G = ground.

2.4V to 5.5V Input, 4A/6A Synchronous Buck Converter with I²C Interface

ELECTRICAL CHARACTERISTICS

 $(T_J = -40^{\circ}C \text{ to } + 125^{\circ}C, V_{IN} = 2.4V \text{ to } 5.5V, \text{ all typical values are measured at } T_J = +25^{\circ}C \text{ and } V_{IN} = 3.7V, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply						
Quiescent Current	lα	EN = High, no load, device not switching		5	15.5	μA
Shutdown Current	I _{SD}	$T_J = -40^{\circ}C$ to +85°C, EN = low		0.1	1.7	μA
Linden Maltana Landarat Thurshald		V _{IN} rising	2.0	2.2	2.4	
Under-Voltage Lockout Threshold	V _{UVLO}	V _{IN} falling	1.9	2.1	2.3	V
Thermal Warning Threshold	т	T _J rising		130		°C
Thermal Warning Hysteresis	T_{JW}	TJ falling		20		°C
Thermal Shutdown Threshold	T _{SD}	T _J rising		150		°C
Thermal Shutdown Hysteresis	I SD	Tյ falling		20		C
Logic Interface EN, SDA, SCL						
High-Level Input Threshold Voltage at EN, SCL, SDA, VSET/VID	V _{IH}		0.9			V
Low-Level Input Threshold Voltage at EN, SCL, SDA, VSET/VID	V _{IL}				0.3	V
Input Leakage Current into SCL Pin	I _{SCL_LKG}			0.01	0.26	μA
Input Leakage Current into SDA Pin	I _{SDA_LKG}			0.01	0.26	μA
Input Leakage Current into EN Pin	I _{EN_LKG}			0.03	0.30	μΑ
Parasitic Capacitance at SCL	C_{SCL}			1		pF
Parasitic Capacitance at SDA	C_{SDA}			2		pF
Start-up, Power Good						
Enable Delay Time	\mathbf{t}_{DELAY}	Time from EN high to device starts switching, R_1 = 249k Ω	340	640	950	μs
Output Voltage Ramp Time	t _{RAMP}	Time from device starts switching to power good	0.65	1.3	1.8	ms
Power Good Lower Threshold	V _{PG}	V_{VOS} referenced to V_{OUT} nominal	85	91	97	%
Power Good Upper Threshold	VPG	V_{VOS} referenced to V_{OUT} nominal	105	111	118	70
Power Good Deglitch Delay	$t_{PG_{DLY}}$	Rising and falling edges		48		μs
Output						
		$T_J = -40^{\circ}C$ to +125°C, $V_{OUT} \ge 1.15V$, FPWM, no Load	-2.0		2.0	
	V	$T_J = -40^{\circ}C$ to +125°C, 0.9V $\leq V_{OUT} < 1.15V$, FPWM, no Load	-2.3		2.3	%
Output Voltage Accuracy	V _{OUT}	$T_J = -40^{\circ}C$ to +125°C, 0.59V ≤ V _{OUT} < 0.9V , FPWM, no Load	-3.3		3.3	70
		T_J = -40°C to +125°C, V _{OUT} < 0.59V, FPWM, no Load	-4.8		4.8	
		EN = high, V _{VOS} = 1.8V		1		
Input Leakage Current into VOS Pin	I _{VOS_LKG}	EN = low, output discharge disabled, V _{VOS} = 1.8V		0.1	0.5	μA
Output Discharge Resistor at VOS Pin	R _{DIS}			17	25	Ω
Load Regulation		V _{OUT} = 0.9V, FPWM		0.18		%/A

2.4V to 5.5V Input, 4A/6A Synchronous Buck Converter with I²C Interface

ELECTRICAL CHARACTERISTICS (continued) (T_J = -40°C to +125°C, V_{IN} = 2.4V to 5.5V, all typical values are measured at T_J = +25°C and V_{IN} = 3.7V, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Power Switch						
High-side FET On-Resistance	Р			15		
Low-side FET On-Resistance				9.8		mΩ
High-side FET Forward Current Limit		SGM6037A and SGM6037B	5.2	6.5	7.8	
(Initialization)		SGM6037C and SGM6037D	6.7	8.5	10.0	
Low-side FET Forward Current Limit	I _{LIM}	SGM6037A and SGM6037B		5.3		А
Low-side FET Forward Current Limit		SGM6037C and SGM6037D		7.2		
Low-side FET Negative Current Limit		SGM6037A, SGM6037B, SGM6037C and SGM6037D		-2.4		
PWM Switching Frequency	f _{sw}	I_{OUT} = 1A, V_{OUT} = 0.9V		2.3		MHz

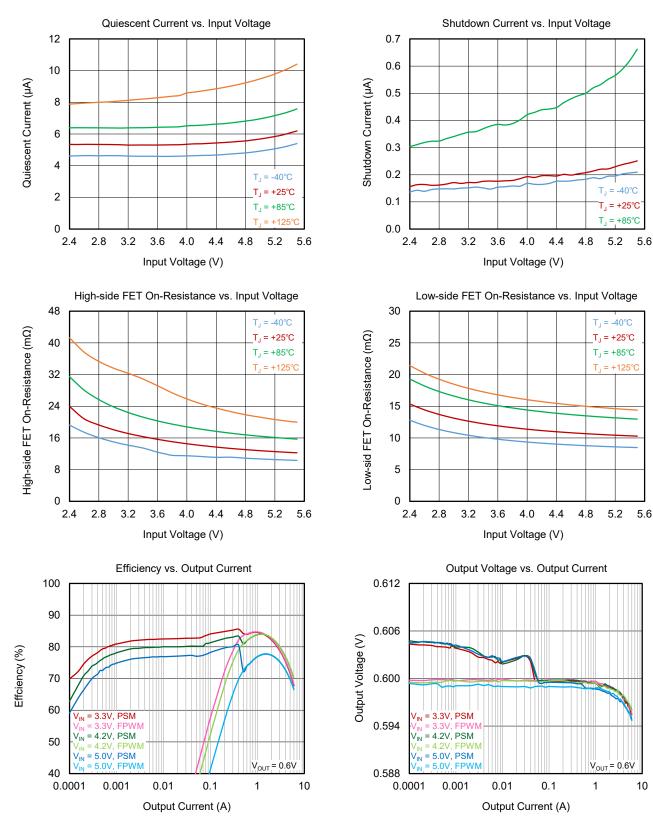
2.4V to 5.5V Input, 4A/6A Synchronous Buck Converter with I²C Interface

I²C INTERFACE TIMING CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		Standard mode			100	kHz
		Fast mode			400	kHz
		Fast mode plus			1	MHz
SCL Clock Frequency	f _{SCL}	High-speed mode (write operation), CB - 100pF(MAX)			3.4	MHz
		High-speed mode (read operation), CB - 10pF(MAX)			3.4	MHz
		High-speed mode (write operation), CB - 400pF(MAX)			1.7	MHz
		High-speed mode (read operation), CB - 400pF(MAX)			1.7	MHz
		Standard mode	4.7			μs
Bus Free Time between a Stop and Start Condition	t _{BUF}	Fast mode	1.3			μs
		Fast mode plus	0.5			μs
		Standard mode	4			μs
Hold Time (Repeated) Start		Fast mode	600			ns
Condition	t _{hd} , t _{sta}	Fast mode plus	260			ns
		High-speed mode	160			ns
	t _{LOW}	Standard mode	4.7			μs
		Fast mode	1.3			μs
Low Period of the SCL Clock		Fast mode plus	0.5			μs
		High-speed mode, CB - 100pF(MAX)	160			ns
		High-speed mode, CB - 400pF(MAX)	320			ns
		Standard mode	4			μs
		Fast mode	600			ns
High Period of the SCL Clock	t _{HIGH}	Fast mode plus	260			ns
		High-speed mode, CB - 100pF(MAX)	60			ns
		High-speed mode, CB - 400pF(MAX)	120			ns
		Standard mode	4.7			μs
Setup Time for a Repeated		Fast mode	600			ns
Start Condition	t_{SU}, t_{STA}	Fast mode plus	260			ns
		High-speed mode	160			ns
		Standard mode	250			ns
		Fast mode	100			ns
Data Setup Time	t_{SU}, t_{DAT}	Fast mode plus	50			ns
		High-speed mode	10			ns
		Standard mode	0		3.45	μs
		Fast mode	0		0.9	μs
Data Hold Time	t_{HD}, t_{DAT}	Fast mode plus	0		1	μs
		High-speed mode, CB - 100pF(MAX)	0		70	ns
		High-speed mode, CB - 400pF(MAX)	0		150	ns

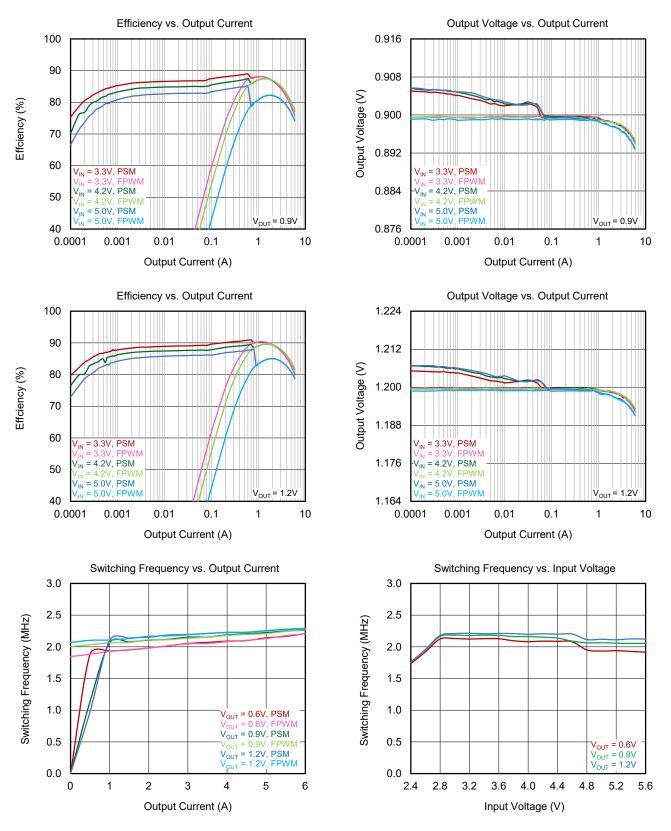
2.4V to 5.5V Input, 4A/6A Synchronous Buck Converter with I²C Interface

I²C INTERFACE TIMING CHARACTERISTICS (continued)


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		Standard mode			1000	ns
		Fast mode	20 + 0.1 C _B		300	ns
Rise Time of SCL Signal	t _{RCL}	Fast mode plus			120	ns
		High-speed mode, CB - 100pF(MAX)	10		40	ns
		High-speed mode, CB - 400pF(MAX)	20		80	ns
		Standard mode	20 + 0.1 C _B		1000	ns
Rise Time of SCL Signal		Fast mode	20 + 0.1 C _B		300	ns
after a Repeated Start Condition and after an	t _{RCL1}	Fast mode plus			120	ns
Acknowledge BIT		High-speed mode, CB - 100pF(MAX)	10		80	ns
		High-speed mode, CB - 400pF(MAX)	20		160	ns
		Standard mode	20 + 0.1 C _B		300	ns
		Fast mode			300	ns
Fall Time of SCL Signal	t _{FCL}	Fast mode plus			120	ns
		High-speed mode, CB - 100pF(MAX)	10		40	ns
		High-speed mode, CB - 400pF(MAX)	20		80	ns
	t _{rda}	Standard mode			1000	ns
		Fast mode	20 + 0.1 C _B		300	ns
Rise Time of SDA Signal		Fast mode plus			120	ns
		High-speed mode, CB - 100pF(MAX)	10		80	ns
		High-speed mode, CB - 400pF(MAX)	20		160	ns
		Standard mode			300	ns
		Fast mode	20 + 0.1 C _B		300	ns
Fall Time of SDA Signal	t _{FDA}	Fast mode plus			120	ns
		High-speed mode, CB - 100pF(MAX)	10		80	ns
		High-speed mode, CB - 400pF(MAX)	20		160	ns
		Standard mode	4			μs
Setup Time of STOP		Fast mode	600			ns
Condition	t _{sυ} , t _{sτo}	Fast mode plus	260			ns
		High-Speed mode	160			ns
		Standard mode			400	pF
Capacitive Load for SDA		Fast mode			400	pF
and SCL	C _B	Fast mode plus			550	pF
		High-Speed mode			400	pF

2.4V to 5.5V Input, 4A/6A Synchronous Buck Converter with I²C Interface

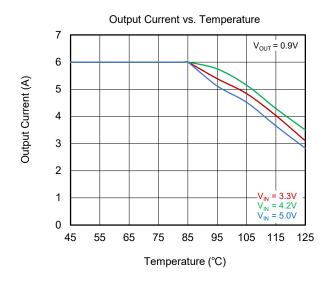
TYPICAL PERFORMANCE CHARACTERISTICS

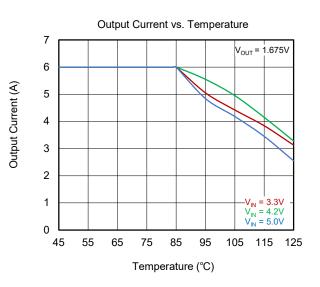

 T_A = +25°C, V_{IN} = 5.0V, V_{OUT} = 0.9V, unless otherwise noted.

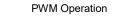
2.4V to 5.5V Input, 4A/6A Synchronous Buck Converter with I²C Interface

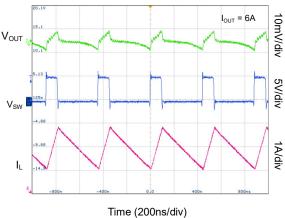
TYPICAL PERFORMANCE CHARACTERISTICS

 T_A = +25°C, V_{IN} = 5.0V, V_{OUT} = 0.9V, unless otherwise noted.

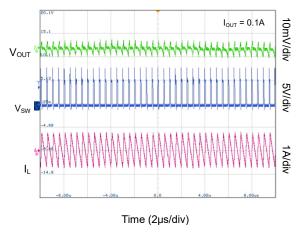


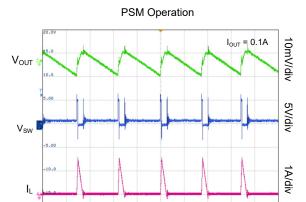

SG Micro Corp

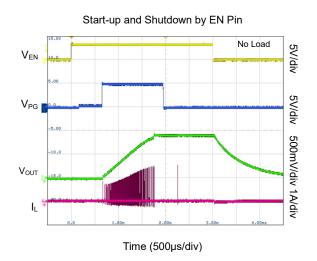

2.4V to 5.5V Input, 4A/6A Synchronous Buck Converter with I²C Interface

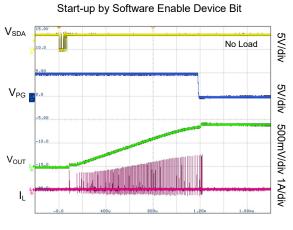

TYPICAL PERFORMANCE CHARACTERISTICS

 T_A = +25°C, V_{IN} = 5.0V, V_{OUT} = 0.9V, unless otherwise noted.

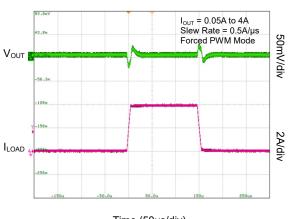






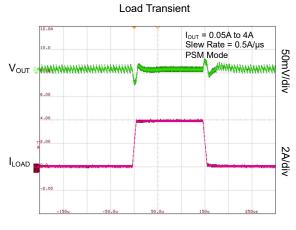


SG Micro Corp

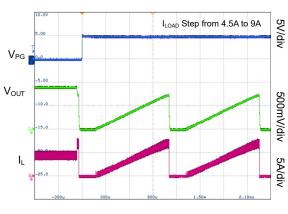

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 T_{A} = +25°C, V_{IN} = 5.0V, V_{OUT} = 0.9V, unless otherwise noted.

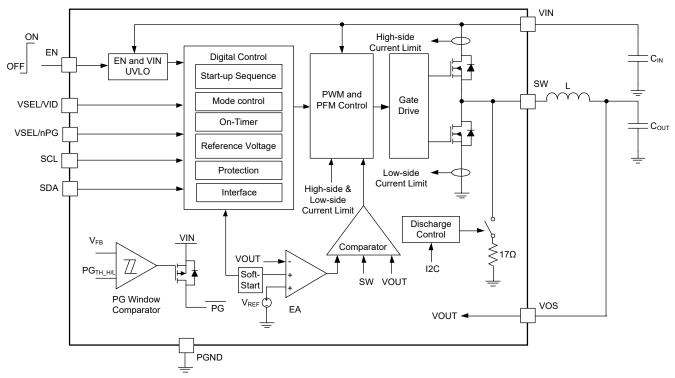
Time (200µs/div)


Load Transient

Time (50µs/div)


VOUT Transition with Different Slew Rate Settings

Time (50µs/div)


HICCUP Protection

Time (300µs/div)

SG Micro Corp

FUNCTIONAL BLOCK DIAGRAM

DETAILED DESCRIPTION

Overview

The SGM6037 family of synchronous Buck converter consumes $5\mu A$ (TYP) quiescent current and offers up to 6A of DC load current in a small WLCSP package. The device adopts the constant on-time (COT) architecture to provide superior load transient performance. In addition, the advanced control architecture offers excellent load and line regulation performance.

The device operates in PWM mode with 2.3MHz of fixed switching frequency at medium to heavy load. At light load, the device automatically operates in power-save mode to provide excellent light load efficiency. The device only requires two 22μ F ceramic output capacitors to achieve minimal output voltage ripple at light load and heavy load.

Feature Description

Power-Save Mode

As the load current decreases, the inductor current reaches around 0A in a switching cycle, and the operation mode becomes discontinuous. The SGM6037 automatically enters power-save mode (PSM) in discontinuous mode. Equation 1 below calculates the device on-time in PSM.

$$t_{\rm ON} = \frac{V_{\rm OUT}}{V_{\rm IN}} \times 416 \text{ns} \tag{1}$$

In order to maintain regulation, the output voltage is slightly increased above the programmed voltage. Adding more output capacitors will minimize the output voltage rise in PSM.

Forced PWM Mode

The SGM6037 is able to operate in FPWM mode to achieve fixed switching frequency and output ripple across the entire operating load range. FPWM is configurable in CONTROL register (**REG0x03**) via I²C.

Start-up

When the input voltage is above the UVLO rising threshold of 2.2V (TYP), toggling the enable pin to logic high to start up the device. Before the output voltage starts ramping up, the device has an enable delay of 640µs (TYP). During the enable delay, the device establishes the internal reference, and reads the resistor connected to the VSET/VID or VSET/nPG pin to determine the start-up output voltage. The internal registers can be programmed via I²C after the enable delay.

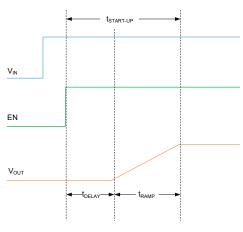


Figure 3. Start-up Sequence

The device initiates an internal soft-start when the enable delay finishes. The internal soft-start time is fixed to 1ms to ramp up the output voltage from 0V to the programmed output voltage. The soft-start mechanism effectively reduces the inrush current drawn from the input source, as well as providing a controlled output voltage rising ramp. For pre-biased output voltage start-up, the device starts up from the pre-biased voltage to the programmed output voltage.

Switch Current Limit and Hiccup Short-Circuit Protection

The device implements over-current protection when the load exceeds the maximum allowed 6A to prevent excessive current drawn from battery type inputs. During an output short scenario or a saturated inductor, the inductor current will reach the current limit threshold. When current limit threshold is reached, the device turns off the high-side switch to terminate the inductor current from further increase, and the low-side switch turns on to ramp down the inductor current to the low-side switch current limit.

During the short-circuit event, as the output voltage drops below 0.3V, the current limit threshold is foldback to 4A for 6A version to prevent the device from excessive temperature rise. When the high-side switch current limit and low-side current limit are triggered for 64 consecutive times, the switching is terminated immediately to enter hiccup short protection mode of 128µs hiccup off-time. The device resumes operation after hiccup off-time with the soft-start sequence. If the over-current or short condition remains, the device remains in the hiccup cycle until the fault condition is removed.

DETAILED DESCRIPTION (continued)

Under-Voltage Lockout (UVLO)

The SGM6037 offers input under-voltage lockout to prevent false triggering with unstable input source. The device's UVLO rising voltage is 2.2V (TYP) and falling threshold is 2.1V (TYP). The device stops operation as soon as the input voltage drops below the falling threshold. The output voltage discharge is active when UVLO falling threshold is reached, and the output voltage discharge function is programmable via the CONTROL register. The internal register settings are not cleared when UVLO is triggered.

When the input voltage drops below the falling threshold, the UVLO bit in the STATUS register is set, and all register settings will reset until the input voltage drops below 1.8V (TYP).

Thermal Warning and Shutdown

The SGM6037 is a high power density device, thus when the junction temperature rises above the T_{JW} , a thermal pre-warning indicator in the STATUS register will toggle high to alert the host, however the device will continue operating.

As the junction temperature continues to rise and exceeds above the T_{SD} , the device stops switching, enabling active discharge to discharge the output voltage and enters thermal shutdown. The device has a 20°C (TYP) thermal shutdown hysteresis to allow the device to resume operation automatically with internal soft-start. The register settings are not changed during thermal shutdown.

Device Functional Modes

Enable and Disable (EN)

I²C interface is live when the EN pin is toggled logic high after the enable delay time. When the EN pin is toggled to logic low, power FETs are off as well as the internal control circuits. Register settings are reset except the EN_OUTPUT_DISCHG bit. EN pin cannot be left floating. Device enters shutdown mode when EN pin is logic low. I^2C communication is terminated in this mode.

The EN pin supports 1.2V I/O logic with 0.66V rising threshold and 0.58V falling threshold.

The device also supports a software enable and disable via EN_DEVICE bit in CONTROL register while EN pin is toggled to logic high. When the device is enabled by this bit, the device starts up with t_{RAMP} , and no t_{DELAY} is required. When the device is disabled by this bit, the device stops switching, but I^2C communication remains active.

Output Discharge

The device implements I²C programmable output voltage discharge function for application requiring sequencing control. The internal discharge path discharges the output voltage through the SW pin to ground. There are four scenarios to discharge the output voltage: EN pin is toggled to logic low, EN_DEVICE bit is set to 0, input voltage UVLO or device thermal shutdown.

Output voltage discharge function is disabled when the EN OUTPUT_DISCHG bit is set to 0. The output discharge function remains active as long as the input voltage is higher than 1V (TYP) and the EN OUTPUT DISCHG bit is retained. When a rising edae of the ΕN pin is applied, the EN OUTPUT DISCHG bit is reset.

Start-up Output Voltage and I²C Slave Address Selection (VSET)

In start-up phase, during the enable delay period, the resistor is connected to VSET/VID or VSET/nPG pin to program the output voltage as well as device slave address through an internal R2D (resistor to digital) converter. Table 1 lists the programmable options.

DETAILED DESCRIPTION (continued)

Table 1. Start-up Output Voltage and I²C Slave Address Options

START-UP OUTPUT VOLTAGE (TYP)	RESISTOR (E96 SERIES, ±1% ACCURACY) AT VSET/VID OR VSET/nPG PIN	I ² C SLAVE ADDRESS
1.15V	249kΩ	1000 110
1.10V	205kΩ	1000 101
1.05V	162kΩ	1000 100
1.00V	133kΩ	1000 011
0.95V	105kΩ	1000 010
0.90V	86.6kΩ	1000 001
0.85V	68.1kΩ	1001 000
0.80V	56.2kΩ	1001 001
0.75V	44.2kΩ	1001 010
0.70V	36.5kΩ	1001 011
0.65V	28.7kΩ	1001 100
0.60V	23.7kΩ	1001 101
0.55V	18.7kΩ	1001 110
0.50V	15.4kΩ	1001 111
0.45V	12.1kΩ	1000 000
0.40V	10kΩ	1000 111

During the enable delay time, a current source is applied on the VSET resistor. The internal ADC converts the voltage on the VSET pin to a digital signal to program the output voltage and I²C slave address. Once this R2D conversion completes, the current source is turned off to avoid unnecessary current consumption. Any capacitance higher than 30pF is not recommended to connect between the VSET pin to ground.

If I^2C command is issued to change the output voltage, the device will ramp up to the VSET resistor programmed output voltage first before ramping up/down to the I^2C programmed output voltage.

VID

The device offers 2 selectable output voltage registers via the VID pin, and dynamic voltage scaling (DVS) is supported via these 2 registers. VID pin is pulled to logic low, the output voltage follows **REG0x01**, and VID pin is pulled to logic high, the output voltage follows **REG0x02**.

Output voltage adjustment can be made via either I^2C programming or toggling the VID pin, and the output

voltage ramp up and down speed is also configurable via the RAMP_SPEED bits.

Active-Low Power Good

The SGM6037 offers variants for an active-low power good option if VID function is not used. The device starts to compare the actual output voltage with the VSET resistor programmed output voltage after the enable delay time. When the voltage reaches 91% (TYP) of programmed output voltage, after 200µs delay, the VSET/nPG is pulled low. The VSET/nPG pin remains low as long as the output voltage is within 91% to 111% of the programmed output voltage.

For the VSET/nPG version, a resistor must be connected from this pin to ground to properly configure the start-up voltage and I^2C slave address. VOUT Register 2 is disabled and this pin's source current is up to 1mA. Due to the active-low logic configuration, in device shutdown, leakage current is increased through the resistor connected to this pin, since the VSET/nPG pin is pulled high.

DETAILED DESCRIPTION (continued)

Table 2. VSET/nPG Pin Logic

DEVICE COND	nPG LOGIC STATUS	
Frable	$0.91 \times V_{OUT_NOM} \le V_{VOS} \le 1.11 \times V_{OUT_NOM}$	Low
Enable	V_{VOS} < 0.91 × V_{OUT_NOM} or V_{VOS} > 1.11 × V_{OUT_NOM}	High
Thermal Shutdown	$T_{J} > T_{SD}$	High
Power Supply Removal	V _{IN} < 1.8V	Undefined

REGISTER MAPS

All registers are 8-bit and individual bits are named from D[0] (LSB) to D[7] (MSB).

I²C Address Map of SGM6037 ADDRESS **REGISTER NAME** D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0] VO1_SET[7:0] 0x01 VOUT Register 1 0x02 VOUT Register 2 VO2 SET[7:0] EN_ DEVICE EN_ HICCUP EN_OUTPU EN_FPWM EN 0x03 **CONTROL** Register RESET RAMP SPEED FPWM T_DISCHG CHANGE 0x05 STATUS Register T_WARN HICCUP Reserved Reserved UVLO Reserved

Bit Types:

R: Read only

R/W: Read/Write

REGISTER MAPS (continued)

REG0x01: VOUT Register 1 [Reset = 0x64]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION
D[7:0]	VO1_SET[7:0]	0110 0100	R/W	Output Voltage 0x00 = 400mV 0x01 = 405mV 0x64 = 900mV (default) 0xFE = 1670mV 0xFF = 1675mV

REG0x02: VOUT Register 2 [Reset = 0x64]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION
D[7:0]	VO2_SET[7:0]	0110 0100	R/W	Output Voltage 0x00 = 400mV 0x01 = 405mV 0x64 = 900mV (default) 0xFE = 1670mV 0xFF = 1675mV

REG0x03: CONTROL Register [Reset = 0x6F]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION
D[7]	RESET	0	R/W	1 = Reset all registers to default
D[6]	EN_FPWM_CHANGE	1	R/W	Enable FPWM mode during output voltage change 0 = Keep the current mode status during output voltage change 1 = Force the device in FPWM during output voltage change (default)
D[5]	EN_DEVICE	1	R/W	Software Enable Device 0 = Disable the device. All registers values are still kept 1 = Re-enable the device with a new start-up without the t _{DELAY} period (default)
D[4]	EN_FPWM	0	R/W	Enable FPWM Mode 0 = Set the device in power save mode at light loads (default) 1 = Set the device in forced PWM mode at light loads
D[3]	EN_OUTPUT_DISCH G	1	R/W	Enable Output Discharge 0 = Disable output discharge 1 = Enable output discharge (default)
D[2]	EN_HICCUP	1	R/W	Enable HICCUP 0 = Disable HICCUP. Enable latching protection 1 = Enable HICCUP. Disable latching protection (default)
D[1:0]	RAMP_SPEED	11	R/W	Voltage Ramp Speed 00 = 20mV/µs (0.25µs/step) 01 = 10mV/µs (0.5µs/step) 10 = 5mV/µs (1µs/step) 11 = 1mV/µs (5µs/step, default)

REG0x05: STATUS Register [Reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION
D[7:5]	Reserved			Reserved.
D[4]		0	Р	Thermal warning.
D[4]	T_WARN	RN 0 R		1: Junction temperature is higher than +130°C.
D[3]	HICCUP	0	R	1: Device has HICCUP status once.
D[2]	Reserved			Reserved.
D[1]	Reserved			Reserved.
D[0]	UVLO	0	R	1: The input voltage is less than the UVLO falling threshold.

APPLICATION INFORMATION

Typical Application

Figure 4 below shows a typical schematic for a 0.9V output application with a wide input voltage range.

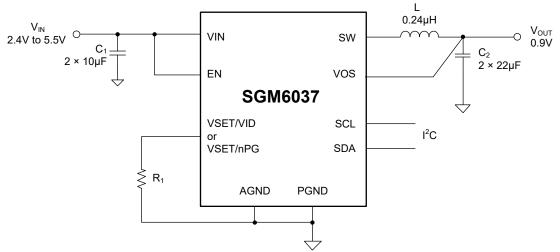


Figure 4. 6A Output Current Typical Application

Design Requirements

Table 3 below shows the operation conditions of this design example.

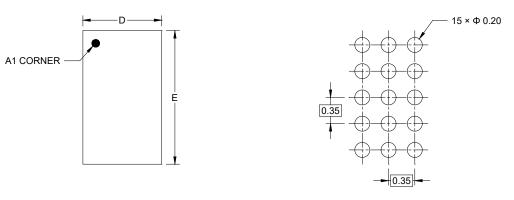
Table 3. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Input Voltage	2.4V to 5.5V
Output Voltage	0.9V
Maximum Output Current	6A

Table 4 lists the components used for the example.

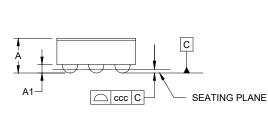
Table 4. List of Components

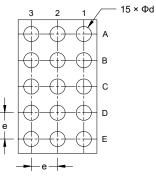
REFERENCE	DESCRIPTION	MANUFACTURER
C ₁	10µF, ceramic capacitor, 6.3V, X7R, size 0603, CL10B106MQ8NRNC	Samsung
C ₂	22µF, ceramic capacitor, 6.3V, X7R, size 0805, GRM21BZ70J226ME44L	Murata
L ₁	0.24µH, power inductor, size 0806, DFE201612E-R24M=P2	Murata
R ₁	Depending on the start-up output voltage, size 0603	Std


REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (DECEMBER 2024) to REV.A


Page

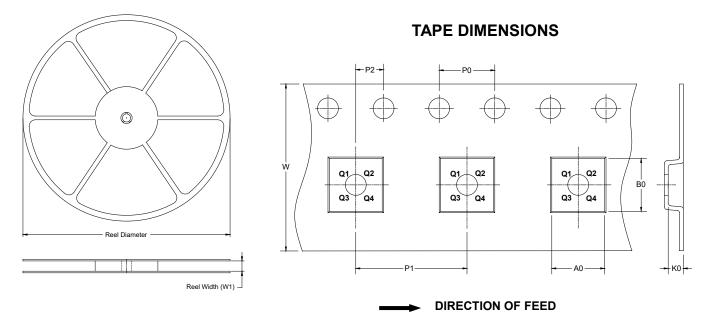

PACKAGE OUTLINE DIMENSIONS WLCSP-1.05×1.78-15B

TOP VIEW

RECOMMENDED LAND PATTERN (Unit: mm)

SIDE VIEW

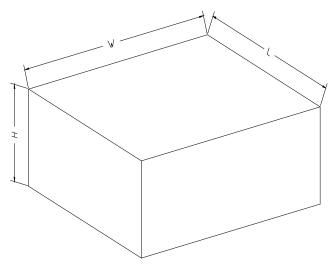
BOTTOM VIEW


Symbol	Dimensions In Millimeters						
Symbol	MIN	NOM	МАХ				
А	-	-	0.500				
A1	0.094	-	0.134				
D	1.020	-	1.080				
E	1.750	-	1.810				
d	0.172	-	0.232				
е							
ccc	0.050						

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS


NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
WLCSP-1.05×1.78-15B	7"	9.0	1.16	1.88	0.65	4.0	4.0	2.0	8.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	DD0002

