

SGM7223 High Speed USB 2.0 (480Mbps) DPDT Analog Switch

GENERAL DESCRIPTION

The SGM7223 is a DPDT (double-pole/double-throw) analog switch. It operates from a 1.8V to 4.3V single power supply. Each switch of the SGM7223 is bidirectional, which can ensure that the high speed signals have little or no attenuation at the outputs.

The SGM7223 features high speed, low bit-to-bit skew and wide bandwidth. The high performances make it very suitable for multiple applications, such as cellular phones and computer peripherals, etc.

The SGM7223 has a power-off protection. It can prevent accidental signal leakage and ensure system reliability under power-down and over-voltage conditions. In addition, the device is capable of withstanding a V_{BUS} short to D+ or D- when the device is either powered on or powered off because of the special circuitry on the D+/D- pins.

The SGM7223 is available in a Green TQFN-2.1×1.6-10L package. It operates over an ambient temperature range of -40°C to +85°C.

APPLICATIONS

Cellular Phones
Digital Cameras
Portable Equipment
Computer Peripherals
Battery-Powered Systems
Routes Signals for USB 2.0 Full-Speed

FEATURES

Supply Voltage Range: 1.8V to 4.3V
 On-Resistance: 4.5Ω (TYP) at 3V

• -3dB Bandwidth: 500MHz

Low Bit-to-Bit Skew: 50ps (TYP)

• Fast Switching Times:

t_{ON}: 11ns t_{OFF}: 20ns

• High Off-Isolation: -30dB ($R_L = 50\Omega$, f = 250MHz)

• Low Crosstalk: -33dB ($R_L = 50\Omega$, f = 250MHz)

• Power-Off and Power-On Protections

• Rail-to-Rail Input and Output Operation

Break-Before-Make Switching

• -40°C to +85°C Operating Temperature Range

Available in a Green TQFN-2.1×1.6-10L Package

PACKAGE/ORDERING INFORMATION

MODEL 17131.		PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
	SGM7223	TQFN-2.1×1.6-10L	-40°C to +85°C	SGM7223YTQD10/TR	7223 XXXX	Tape and Reel, 3000

MARKING INFORMATION

NOTE: XXXX = Date Code.

XXXX

Date Code - Week
Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

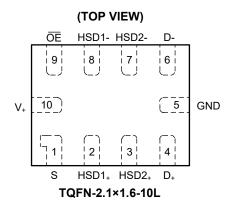
V+, IN to GND	0V to 4.6V
Analog, Digital Voltage Range	$-0.3V$ to $(V_+) + 0.3V$
Continuous Current HSDn or Dn	±100mA
Peak Current HSDn or Dn	±150mA
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	4000V
MM	400V

RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range-40°C to +85°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

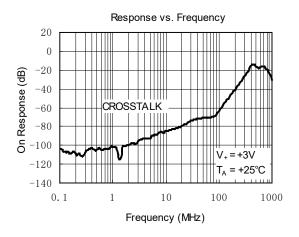
PIN CONFIGURATION

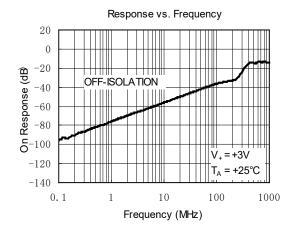
PIN DESCRIPTION

PIN	NAME	FUNCTION
1	S	Select Input Pin.
2, 3, 8, 7, 4, 6	HSD1 ₊ , HSD2 ₊ , HSD1 ₋ , HSD2 ₋ , D ₊ , D ₋	Data Ports.
5	GND	Ground.
9	ŌĒ	Output Enable Control Pins.
10	V ₊	Positive Power Supply.

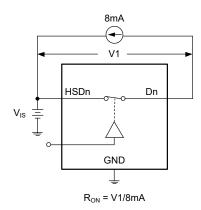
FUNCTION TABLE

ŌĒ	S	HSD1+ HSD1-	HSD2+ HSD2-
0	0	ON	OFF
0	1	OFF	ON
1	х	OFF	OFF

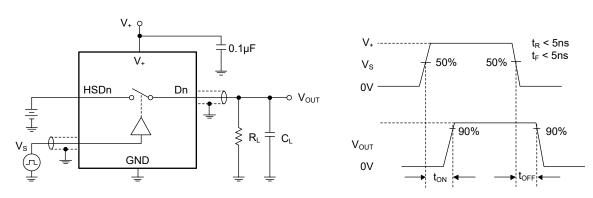

NOTE: Switches Shown For Logic "0" Input.

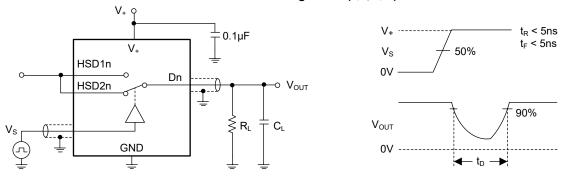

ELECTRICAL CHARACTERISTICS

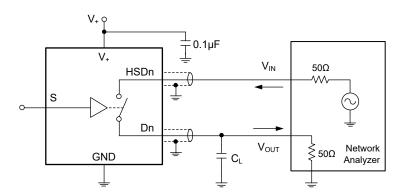
 $(V_{+} = 1.8V \text{ to } 4.3V, \text{ GND} = 0V, V_{IH} = 1.6V, V_{IL} = 0.5V, \text{ Full} = -40^{\circ}\text{C} \text{ to } + 85^{\circ}\text{C}.$ Typical values are at $V_{+} = 3.3V, T_{A} = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$


PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
Analog Switch							
Analog I/O Voltage (HSD1 ₊ , HSD1 ₋ , HSD2 ₊ , HSD2 ₋)	V _{IS}		Full	0		V ₊	V
On-Resistance	R _{on}	$V_{+} = 3V$, $V_{IS} = 0V$ to 0.4V, $I_{D} = 8mA$,	+25°C		4.5	8.5	Ω
On-1 (Colotanoc	TON	Test Circuit 1	Full			9	32
On-Resistance Match between	ΔR _{on}	$V_{+} = 3V$, $V_{IS} = 0V$ to 0.4V, $I_{D} = 8mA$,	+25°C		0.2	0.6	Ω
Channels	ΔI (ON	Test Circuit 1	Full			1.5	32
On-Resistance Flatness	R _{FLAT(ON)}	$V_{+} = 3V$, $V_{IS} = 0V$ to 1.0V, $I_{D} = 8mA$,	+25°C		1.8	2.2	Ω
On recoloration rightiess	FLAT(ON)	Test Circuit 1	Full			2.8	32
Power Off Leakage Current (D_+, D)	I _{OFF}	$V_{+} = 0V, V_{D} = 0V \text{ to } 3.6V, V_{S}, V_{\overline{OE}} = 0V \text{ or } 3.6V$	Full			1	μΑ
Increase in I+ per Control Voltage	I _{CCT}	$V_{+} = 3.6V$, V_{S} or $V_{\overline{OE}} = 2.6V$	Full			5	μΑ
Source Off Leakage Current	I _{HSD2(OFF)} , I _{HSD1(OFF)}	$V_{+} = 3.6V, V_{IS} = 3.3V/0.3V, V_{D} = 0.3V/3.3V$	Full			1	μΑ
Channel On Leakage Current	I _{HSD2(ON)} , I _{HSD1(ON)}	$V_{+} = 3.6V$, $V_{IS} = 3.3V/0.3V$, $V_{D} = 3.3V/0.3V$ or floating	Full			1	μA
Digital Inputs							
Input High Voltage	V _{IH}		Full	1.6			V
Input Low Voltage	V _{IL}		Full			0.5	V
Input Leakage Current	I _{IN}	$V_+ = 3V$, V_S , $V_{\overline{OE}} = 0V$ or V_+	Full			1	μΑ
Dynamic Characteristics							
Turn-On Time	t _{ON}	$V_{IS} = 0.8V, R_{L} = 50\Omega, C_{L} = 10pF,$	+25°C		11		ns
Turn-Off Time	t _{OFF}	Test Circuit 2	+25°C		20		ns
Break-Before-Make Time Delay	t _D	V_{IS} = 0.8V, R_L = 50 Ω , C_L = 10pF, Test Circuit 3	+25°C		5		ns
Propagation Delay	t _{PD}	$R_L = 50\Omega$, $C_L = 10pF$	+25°C		0.3		ns
Off Isolation	O _{ISO}	Signal = 0dBm, R_L = 50 Ω , f = 250MHz, Test Circuit 4	+25°C		-30		dB
Channel-to-Channel Crosstalk	X _{TALK}	Signal = 0dBm, R_L = 50 Ω , f = 250MHz, Test Circuit 5	+25°C		-33		dB
-3dB Bandwidth	BW	Signal = 0dBm, R_L = 50 Ω , C_L = 5pF Test Circuit 6	+25°C		500		MHz
Channel-to-Channel Skew	t _{SKEW}	$R_L = 50\Omega, C_L = 10pF$	+25°C		0.05		ns
Charge Injection Select Input to Common I/O	Q	$V_G = GND, C_L = 1nF, R_G = 0\Omega,$ $Q = C_L \times V_{OUT}, Test Circuit 7$	+25°C		9.8		рС
HSD ₊ , HSD ₋ , D ₊ , D ₋ On Capacitance	Con		+25°C		6.5		pF
Power Requirements	<u>.</u>						
Power Supply Range	V ₊		Full	1.8		4.3	V
Power Supply Current	I ₊	$V_+ = 3V$, V_S , $V_{\overline{OE}} = 0V$ or V_+	Full			1	μΑ

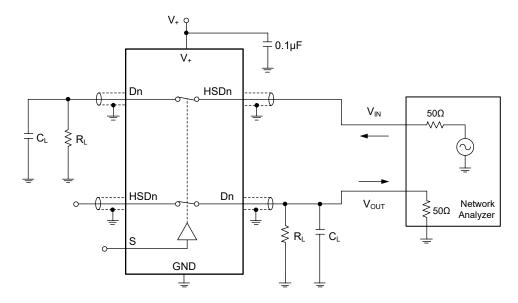
TYPICAL PERFORMANCE CHARACTERISTICS



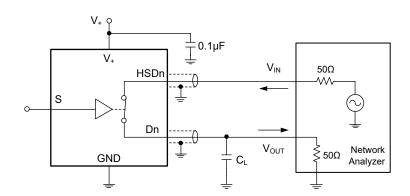

TEST CIRCUITS


Test Circuit 1. On-Resistance

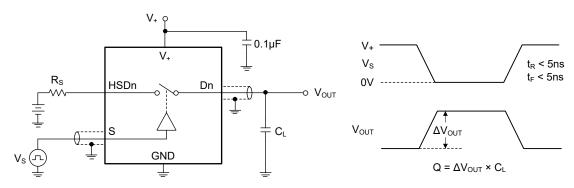
Test Circuit 2. Switching Times (ton, toff)



Test Circuit 3. Break-Before-Make Time (t_D)


Test Circuit 4. Off Isolation

TEST CIRCUITS (continued)



Channel-to-Channel Crosstalk = -20 log (V_{HSDn}/V_{OUT})

Test Circuit 5. Channel-to-Channel Crosstalk

Test Circuit 6. -3dB Bandwidth

Test Circuit 7. Charge Injection (Q)

APPLICATION INFORMATION

Meet the Short Requirements of USB 2.0 V_{BUS}

According to Section 7.1.1 of the USB 2.0 specification, USB devices must be able to withstand a V_{BUS} short to D+ or D- when powered on or off. The SGM7223 can fully meet these two requirements

Power-Off Protection

When D+ or D- is shorted to V_{BUS} , there is a special protection circuit inside the SGM7223, so that the device will not be damaged within 24 hours. In case of power-down or over-voltage event, the protection circuit can prevent the leakage signal on D+/D- pins to ensure the reliability of the system.

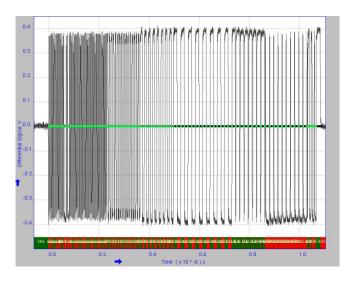


Figure 1. Waveform Plot

Power-On Protection

The USB 2.0 specification requires USB device to ensure that the device will not be damaged even if V_{BUS} short-circuit occurs during data transmission. Therefore, under over-voltage conditions, the SGM7223 will limit the current flowing back to the V_+ track, and the current will not exceed the safe operating range.

USB2.0 Signal Quality Compliance Test Results

The results of USB eye map test are shown in Figure 1 and Figure 2. Table 1 gives a summary of the USB tests.

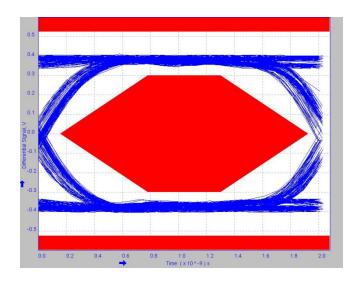


Figure 2. High Speed Signal Quality Eye Diagram Test (V₊ = 3.3V)

Table 1. Summary of the USB 2.0 Signal Quality Tests Results

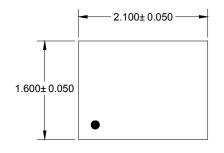
Measurement Name	MIN	MAX	Mean	pk-pk	Standard Deviation	RMS	Population	Status
Eye Diagram Test	-	-	-	-	-	-	-	Pass
Signal Rate	467.3807 Mbps	496.5449 Mbps	479.9494 Mbps	0.0000 bps	6.174360 Mbps	480.4821 Mbps	512	Pass
EOP Width	-	-	16.61442ns	-	-	-	1	Pass
EOP Width (Bits)	-	-	7.974082	-	-	-	1	Pass
Falling Edge Rate	1.100184 kV/µs	1.304518 kV/µs	1.187936 kV/µs	204.3340 V/µs	52.11665 V/μs	1.189068 kV/µs	107	Pass
Rising Edge Rate	1.058148 kV/µs	1.232657 kV/µs	1.137964 kV/µs	174.5099 V/µs	46.35985 V/μs	1.138899 kV/µs	108	Pass

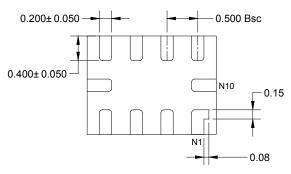
Additional Information:

Consecutive Jitter range: -115.0ps to 71.20ps RMS Jitter 40.26ps KJ Paired Jitter range: -34.68ps to 29.00ps RMS Jitter 11.09ps JK Paired Jitter range: -30.42ps to 35.73ps RMS Jitter 12.11ps

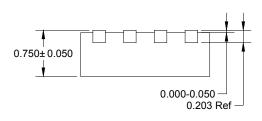
• Rising Edge Rate: 1.137964kV/µs (Equivalent Rise Time = 562.41ps)

• Falling Edge Rate: 1.187936kV/µs (Equivalent Fall Time = 538.75ps)

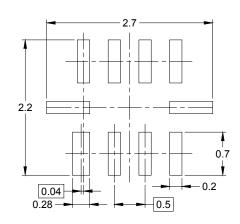

SGM7223


REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


MAY 2016 - REV.A.1 to REV.A.2	Page
Added Recommended Land Pattern section	11
Added Tape and Reel Information section	12, 13
MAY 2011 – REV.A to REV.A.1	Page
Updated package name	All
Changes from Original (AUGUST 2008) to REV.A	Page
Changed from product preview to production data	All

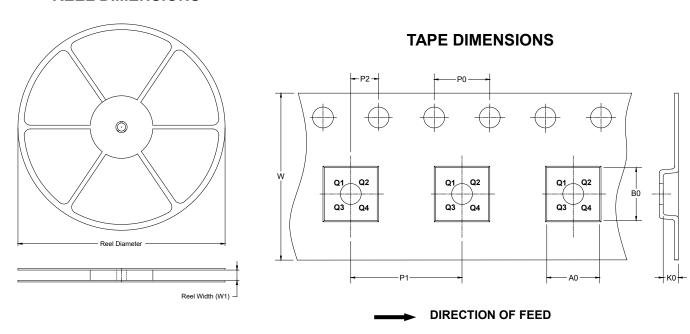
PACKAGE OUTLINE DIMENSIONS TQFN-2.1×1.6-10L



TOP VIEW

SIDE VIEW

BOTTOM VIEW

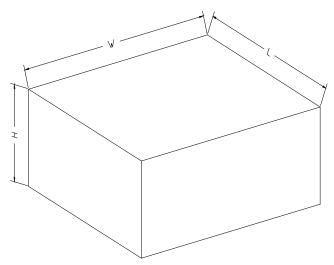


RECOMMENDED LAND PATTERN

NOTE: All linear dimensions are in millimeters.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TQFN-2.1×1.6-10L	7"	9.0	1.90	2.30	0.90	4.0	4.0	2.0	8.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18