SGM41606S I²C Controlled, Single-Cell 8A Switched Cap Parallel Battery Charger with Bypass Mode and Dual-Input Selector

GENERAL DESCRIPTION

The SGM41606S is an efficient 8A switched-capacitor battery charging device with I²C control that can operate either in charge-pump voltage divider mode or in bypass mode. It can charge single-cell Li-lon or Li-polymer battery in a wide 3.6V to 12V input voltage range (VBUS) from smart wall adapters or power banks. The switched-capacitor architecture is optimized for 50% duty cycle to cut the input current to one-half of the battery current and reduce the wiring drops, losses and temperature rise in the application.

The SGM41606S is equipped with the capability to facilitate a 5A bypass mode charge, formerly known as battery switch charge, via its built-in MOSFETs. The R_{DSON} value for the charging path in bypass mode is kept under 17m Ω (TYP) to accommodate high current operations. This integrated bypass mode ensures that a 5V fast charging adapter can be used to charge a single-cell battery, thereby maintaining backward compatibility.

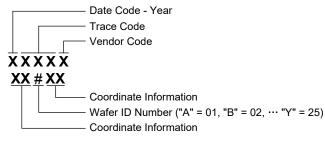
The SGM41606S is designed to support a dual input setup using an integrated multiplexer control and driver for external OVPFETs. Additionally, it also supports single input without OVPFET or with just a single OVPFET.

The SGM41606S is available in a Green WLCSP-2.65×2.65-36B-A package and can operate in the -40°C to +85°C ambient temperature range.

APPLICATIONS

Smartphone, Tablet

FEATURES


- Efficiency Optimized Switched-Capacitor Architecture
 - Up to 8A Output Current
 - 3.6V to 12V Input Voltage Range
 - 187.5kHz to 1.5MHz Switching Frequency Setting
 - Above 97.7% Voltage Divider Mode Efficiency (when V_{BAT} = 4V, I_{BAT} = 2A)
- Dual-Input Power Mux Controller for Source Selection
- Integrated Programmable Protection Features for Safe Operation
 - Input Over-Voltage Protection (VBUS_OVP)
 - Battery Over-Voltage Protection (VBAT_OVP)
 - Input Over-Current Protection (IBUS_OCP)
 - Battery Over-Current Protection (IBAT_OCP)
 - Input Under-Current Protection (IBUS_UCP)
 - Input Short-Circuit Protection (VBUS_SCP)
 - Output Over-Voltage Protection (VOUT_OVP)
 - Battery and Cable Connector Temperature Monitoring (TSBAT_FLT and TSBUS_FLT)
 - Die Over-Temperature Protection (TDIE_OTP)
- Up to 13A Charging Current with Synchronized Dual SGM41606S for Parallel Charging
- 10-Channel 16-Bit (Effective) ADC Converter for
 - VAC1, VAC2, VBUS, IBUS, VOUT, VBAT, IBAT, TSBUS, TSBAT, TDIE for Monitoring

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM41606S	WLCSP-2.65×2.65-36B-A	-40°C to +85°C	SGM41606SYG/TR	SGM 41606S XXXXX XX#XX	Tape and Reel, 3000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code. XX#XX = Coordinate Information and Wafer ID Number.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

I²C Controlled, Single-Cell, 8A Switched Cap Parallel Battery Charger with Integrated Protection and Dual-Input Selector

ABSOLUTE MAXIMUM RATINGS

Voltage Range (with Respect to GND)
VAC1, VAC2 (Converter not Switching)0.3V to 35V
VBUS (Converter not Switching)0.3V to 22V
PMID (Converter not Switching)
ACDRV1/ACDRV2 to VBUS22V to 6V
PMID to VBUS0.3V to 6V
CFL1, CFL20.3V to 6V
CFH1, CFH2 while CFHx - VOUT = 6V (MAX)
-0.3V to 12V
VOUT0.3V to 6V
BATP, REGN, nINT, SDA, SCL, CDRVL_ADDRMS,
SRN_SYNCIN, TSBAT_SYNCOUT, TSBUS0.3V to 6V
CDRVH0.3V to 22V
SRP_BATN0.3V to 1.8V
Package Thermal Resistance
WLCSP-2.65×2.65-36B-A, θ _{JA}
WLCSP-2.65×2.65-36B-A, θ _{JB} 4.4°C/W
WLCSP-2.65×2.65-36B-A, θ _{JC}
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility ^{(1) (2)}
HBM±2000V
CDM±1500V

NOTES:

1. For human body model (HBM), all pins comply with ANSI/ESDA/JEDEC JS-001 specifications.

2. For charged device model (CDM), all pins comply with ANSI/ESDA/JEDEC JS-002 specifications.

RECOMMENDED OPERATING CONDITIONS

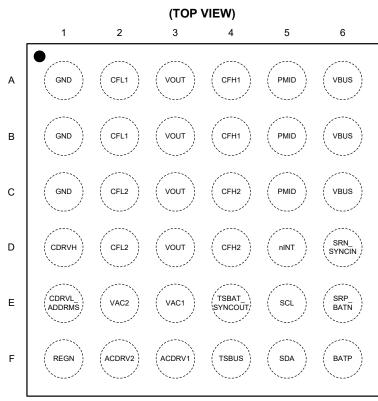
Input Voltage at VAC1 and VAC2, VAC1, VAC2

	12V (MAX)
Input Voltage at VBUS	12V (MAX)
Input Voltage at PMID	12V (MAX)
Voltage across Q _{CH1} , Q _{CH2}	
PMID-CFH1, PMID-CFH2	5.5V (MAX)
Voltage across Q _{DH1} , Q _{DH2}	
CFH1-VOUT, CFH2-VOUT	5.5V (MAX)
Voltage across Q _{CL1} , Q _{CL2}	
VOUT-CFL1, VOUT-CFL2	5.5V (MAX)
Voltage across Q _{DL1} , Q _{DL2}	
CFL1, CFL2	5.5V (MAX)
Charging Current, I _{CHG}	8A (MAX)
Operating Temperature Range	40°C to +85°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

WLCSP-2.65×2.65-36B-A

PIN DESCRIPTION

PIN	NAME	TYPE ⁽¹⁾	FUNCTION
A1, B1, C1	GND	Р	Power Ground Pins.
A2, B2	CFL1	Р	Channel-1 Flying Capacitor Negative Pins. Connect 2~4 22µF parallel capacitors between CFH1 and CFL1 as close as possible to the device.
A3, B3, C3, D3	VOUT	Р	Device Output Pins. Connect it to the battery pack positive terminal. A 22µF capacitor between VOUT and GND pins is recommended.
A4, B4	CFH1	Р	Channel-1 Flying Capacitor Positive Pins. Connect 2~4 22µF parallel capacitors between CFH1 and CFL1 as close as possible to the device.
A5, B5, C5	PMID	Р	Power Stage Supply Input Pins. Bypass them with at least a 10μ F ceramic capacitor to GND.
A6, B6, C6	VBUS	Р	Device Power Input Pins. Use a 1μ F or larger ceramic capacitor between VBUS and GND pins close to the device.
C2, D2	CFL2	Р	Channel-2 Flying Capacitor Negative Pins. Connect 2~4 22µF parallel capacitors between CFH2 and CFL2 as close as possible to the device.
C4, D4	CFH2	Р	Channel-2 Flying Capacitor Positive Pins. Connect 2~4 22µF parallel capacitors between CFH2 and CFL2 as close as possible to the device.
D1	CDRVH	AIO	Charge Pump for Gate Drive. Connect a 0.22µF MLCC capacitor between CDRVH and CDRVL_ADDRMS.
D5	nINT	DO	Open-Drain Interrupt Output Pin. Use a $10k\Omega$ pull-up to the logic high rail. It is normally high but generates a low 256µs pulse when a charge status or fault occurs to inform the host.

I²C Controlled, Single-Cell, 8A Switched Cap Parallel Battery Charger with Integrated Protection and Dual-Input Selector

SGM41606S

PIN DESCRIPTION (continued)

PIN	NAME	TYPE ⁽¹⁾	FUNCTION
D6	SRN_SYNCIN	AI	Battery Current Sensing Negative Input and SYNCIN for Secondary Configuration. Place a $2m\Omega$ or $5m\Omega$ (R _{SNS}) shunt resistor between SRP_BATN and SRN_SYNCIN pins. Short SRP_BATN and SRN_SYNCIN together to GND if not used. If configured as a secondary IC for parallel charging, this pin functions as SYNCIN, and connect it to TSBAT_SYNCOUT of the primary IC, as well as connect a $1k\Omega$ pull-up resistor from this pin to REGN.
E1	CDRVL_ADDRMS	AIO	Charge Pump for Gate Drive. Connect a 0.22μ F MLCC capacitor between CDRVH and CDRVL_ADDRMS. During POR, this pin is also used to assign the I^2 C address of the device and the mode of the device as standalone, primary, or secondary.
E2	VAC2	AI	VAC2 Voltage Sense Input Pin. Connect it to VBUS if ACFET2 and RBFET2 are not used.
E3	VAC1	AI	VAC1 Voltage Sense Input Pin. Connect it to VBUS if ACFET1 and RBFET1 are not used.
E4	TSBAT_SYNCOUT	AI	Battery Temperature Sense Input and SYNCOUT for Primary Configuration. Connect it to the battery NTC thermistor and the external resistor divider that is pulled up to REGN. See the TSBAT section for choosing the resister divider values. If configured as a primary IC for parallel charging, this pin functions as SYNCOUT, and is connected to SRN_SYNCIN of the secondary IC.
E5	SCL	DI	I ² C Interface Clock Input Line. The device I ² C controller block is forced to reset when receiving 9 clock pulses on the SCL line.
E6	SRP_BATN	AI	Battery Voltage Sensing Negative Input or Battery Current Sensing Positive Input. Connect a 100 Ω resistor between this pin and negative terminal of the battery pack. Place a 2m Ω or 5m Ω (R _{SNS}) shunt resistor between this pin and SRN_SYNCIN pin. Short this pin and SRN_SYNCIN together if R _{SNS} is not used.
F1	REGN	AO	Internal 5V LDO Output. Connect a 4.7 μ F MLCC capacitor between this pin and GND. In Primary/Secondary mode, connect through 1k Ω resistor to the TSBAT_SYNCOUT pin and SRN_SYNCIN pin. Do not use this pin for any other function.
F2	ACDRV2	Р	External Dual N-MOSFET Gate Control Pin. Connect it to the gate of the external back-to-back N-MOSFET in the port2 charging path, or connect it to ground if the back-to-back N-MOSFET is not used.
F3	ACDRV1	Ρ	External Dual N-MOSFET Gate Control Pin. Connect it to the gate of the external back-to-back N-MOSFET in the port1 charging path, or connect it to ground if the back-to-back N-MOSFET is not used.
F4	TSBUS	AI	BUS Temperature Sense Input. Connect it to the cable connector NTC thermistor and the external resistor divider that is pulled up to REGN. See the TSBUS section for choosing the resister divider values.
F5	SDA	DIO	$\rm I^2C$ Interface Data Line. The SDA line is forced to release when the 25ms $\rm I^2C$ timeout fault occurs.
F6	BATP	AI	Battery Voltage Sensing Positive Input. Connect a 100Ω resistor between BATP and positive terminal of the battery pack.

NOTE:

1. P = power, AIO = analog input/output, AI = analog input, DO = digital output, AO = analog output, DIO = digital input/output.

ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Currents						
Battery Only Quiescent Current	I _{Q BAT}	ADC disabled, charge disabled, VBUS, VAC1, VAC2 not present		13	24	μA
		ADC enabled (slowest mode). charge disabled, VBUS, VAC1, VAC2 not present		1100	1800	μ, ,
		ADC disabled, charge disabled, ACDRV disabled, EN_HIZ = 1, V_{VAC1} or V_{VAC2} = 8V		34		
VAC Quiescent Current	I_{Q_VAC}	ADC disabled, charge disabled, ACDRV disabled, V_{VAC1} or $V_{VAC2} = 8V$ ADC disabled, charge disabled, ACDRV enabled,		670		μA
		V_{VAC1} or $V_{VAC2} = 8V$		950		
VAC UVLO Rising Threshold	V _{AC_UVLO_R}	V_{VAC1} or V_{VAC2} rising, for active I^2C	3.1	3.37	3.64	V
VAC UVLO Falling Threshold	$V_{\text{AC}_\text{UVLO}_\text{F}}$	V_{VAC1} or V_{VAC2} falling	2.9	3.17	3.44	V
VAC UVLO Hysteresis	$V_{\text{AC_UVLO_HYS}}$			200		mV
VBUS UVLO Rising Threshold	$V_{\text{BUS}_\text{UVLO}_\text{R}}$	V_{VBUS} rising, for active I^2C	3.05	3.35	3.6	V
VBUS UVLO Falling Threshold	$V_{\text{BUS}_\text{UVLO}_F}$	V _{VBUS} falling	2.55	2.8	3.05	V
VBUS UVLO Hysteresis	$V_{\text{BUS}_\text{UVLO}_\text{HYS}}$			550		mV
VBUS Present Rising Threshold	$V_{BUS_PRESENT_R}$	V_{VBUS} rising to allow user to set CHG_EN = 1	3.05	3.35	3.6	V
VBUS Present Falling Threshold	V _{BUS_PRESENT_F}	V _{VBUS} falling	2.85	3.15	3.4	V
VBUS Present Hysteresis	$V_{\text{BUS}_\text{PRESENT}_\text{HYS}}$			200		mV
VOUT UVLO Rising Threshold	V _{OUT_UVLO_R}	V _{VOUT} rising, for active I ² C	2.35	2.55	2.75	V
VOUT UVLO Falling Threshold	V _{OUT_UVLO_F}	V _{VOUT} falling	2.15	2.35	2.55	V
VOUT UVLO Hysteresis	V _{OUT_UVLO_HYS}			200		mV
VOUT Present Rising Threshold	V _{OUT_PRESENT_R}	V _{VOUT} rising to allow user to set CHG_EN = 1	2.8	3.05	3.3	V
VOUT Present Falling Threshold	V _{OUT_PRESENT_F}	V _{VOUT} falling	2.7	2.95	3.2	V
VOUT Present Hysteresis	V _{OUT_PRESENT_HYS}			100		mV
External OVP Control					•	
VAC Present Rising Threshold	V _{AC_PRESENT_R}	V_{VAC1} or V_{VAC2} rising to turn on ACFET- RBFET	3.1	3.37	3.64	V
VAC Present Falling Threshold	V _{AC_PRESENT_F}	V _{VAC1} or V _{VAC2} falling	2.9	3.17	3.44	V
VAC Present Hysteresis	V _{AC_PRESENT_HYS}			200		mV
VAC Present Rising Threshold Deglitch Time	$t_{VAC_IN_DEG}$	Deglitch between V_{VAC} rising above $V_{\text{AC}_\text{PRESENT}_R}$ and starting external OVPFET turn-on		5		ms
VAC OVP Rising Threshold Range	$V_{\text{AC}_\text{OVP}_\text{R}}$	V_{VAC1} or V_{VAC2} rising	6.5		18	V
		$V_{AC1_OVP_R}$ or $V_{AC2_OVP_R}$ = 6.5V		6.5		
VAC OVP Threshold Accuracy	V	$V_{AC1_OVP_R}$ or $V_{AC2_OVP_R}$ = 10.5V		10.5		v
VAC OVE Threshold Accuracy	$V_{AC_OVPR_ACC}$	$V_{AC1_OVP_R}$ or $V_{AC2_OVP_R}$ = 12V		12		v
		$V_{AC1_OVP_R}$ or $V_{AC2_OVP_R} = 18V$		18		
VAC Over-Voltage Hysteresis	V _{AC_OVP_HYS}			3		%
VAC OVP Rising Deglitch Time	tvac_ovpr_deg	Deglitch between V_{VAC1} or V_{VAC2} rising above $V_{AC OVP R}$ and triggering the protection action		100		ns
VAC OVP Resume Time	t _{VAC_OVP_RSM}			64		μs
VAC Pull-Down Resistance	R _{PDN_VAC}	V _{VAC1} or V _{VAC2} = 10V (Clamp to 35mA)		350		Ω
VBUS Pull-Down Resistance	R _{PDN_VBUS}	V _{VBUS} = 10V		6		kΩ
REGN LDO						
REGN LDO Output Voltage	V _{REGN}	V _{VBUS} = 8V, I _{REGN} = 20mA		5		V
REGN LDO Current Limit	I _{REGN}	V _{VBUS} = 8V, V _{REGN} = 4.5V	20			mA

ELECTRICAL CHARACTERISTICS (continued)

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
Switched Cap Chargers							
VBUS to VOUT Resistance	R _{DROPOUT}	Bypass mode			17		mΩ
R _{DSON} of Reverse Blocking FET	R _{DS_QRB}	V _{VBUS} = 8V	V _{VBUS} = 8V		5.3		mΩ
R _{DSON} of Q _{CH1}	R _{DS_QCH1}	V _{PMID} = 8V			20		mΩ
R _{DSON} of Q _{DH1}	R _{DS_QDH1}	$V_{CFLY} = 4V$			12		mΩ
R _{DSON} of Q _{CL1}	RDS_QCL1	$V_{VOUT} = 4V$			12		mΩ
R _{DSON} of Q _{DL1}	RDS_QDL1	$V_{CFLY} = 4V$			12		mΩ
R _{DSON} of Q _{CH2}	R _{DS_QCH2}	$V_{\text{PMID}} = 8V$			20		mΩ
R _{DSON} of Q _{DH2}	R _{DS_QDH2}	$V_{CFLY} = 4V$			12		mΩ
R _{DSON} of Q _{CL2}	R _{DS_QCL2}	$V_{VOUT} = 4V$			12		mΩ
R _{DSON} of Q _{DL2}	RDS_QDL2	$V_{CFLY} = 4V$			12		mΩ
Protection							<u>.</u>
nINT Low Pulse Duration when a Protection Occurs	t _{INT}				256		μs
VBUS OVP Rising Threshold Range	V _{BUS OVP R}	Voltage divider mode	I ² C programmable, 50mV per step, 8.9V by default	7		12.25	- v
	V BUS_OVP_R	Bypass mode	I ² C programmable, 25mV per step, 4.45V by default	3.5		6.5	Ň
VBUS OVP Accuracy	VBUS OVPR ACC	$V_{BUS_{OVP_R}} = 4.45V$		-2		2	%
	• BUS_OVPR_ACC	$V_{BUS_{OVP_R}} = 9V$		-1.1		1.1	,,,
VBUS OVP Rising Deglitch Time	$t_{VBUS_OVPR_DEG}$	Deglitch between and triggering prot	V _{VBUS} rising above V _{BUS_OVP_R} tection action		1		μs
VBUS OVP Alarm Rising Threshold		Voltage divider mode	I ² C programmable, 50mV per step, 8.7V by default	7		13.35	V
Range	$V_{BUSOVP_ALM_R}$	Bypass mode	I ² C programmable, 25mV per step, 4.35V by default	3.5		6.675	
VBUS OVP Alarm Hysteresis	$V_{\text{BUSOVP}_\text{ALM}_\text{HYS}}$	$V_{BUSOVP_ALM_R} = 8V$,		100		mV
VBUS OVP Alarm Accuracy	N	V _{BUSOVP_ALM_R} = 4V		-3.2		3.7	%
	V _{BUSOVP_ALM_ACC}	V _{BUSOVP_ALM_R} = 8V		-2.9		3.5	%
IBUS OCP Threshold Range	I _{BUS_OCP}	I ² C programmable default	e, 250mA per step, 4.25A by	1		6.5	А
IBUS OCP Threshold Accuracy	I _{BUS_OCP_ACC}	I _{BUS_OCP} = 3.0A		-3.7		4	%
IBUS OCP Deglitch Time	t _{IBUS_OCP_DEG}	Deglitch between trigger protection a	I_{BUS} rising above $I_{\text{BUS}_\text{OCP}}$ and action		80		μs
IBUS OCP Alarm Threshold Range	I _{BUSOCP_ALM_R}	I ² C programmabl default	e, 250mA per step, 3.5A by	1		8.75	А
IBUS OCP Alarm Accuracy	IBUSOCP_ALM_ACC	$I_{BUSOCP_ALM_R} = 3.0A$	A, internal accuracy, T _J = +25°C	-4.4		3.6	%
		I _{BUS_UCP_R} = 250mA, BUSUCP = 1			250		
IBUS UCP Threshold	I	$I_{BUS_{UCP_R}} = 500 \text{m}$	A, BUSUCP = 0		500		mA
IBOS OCF THeshold	BUS_UCP	$I_{BUS_UCP_F} = 125 mA$	A, BUSUCP = 1		125		ШA
		$I_{BUS_UCP_F} = 250 mA$			250		
IBUS UCP Deglitch time	t _{IBUS_UCP_DEG}	Deglitch between trigger protection 0.01ms by default	I_{BUS} falling below I_{BUS_UCP} and action. I^2C programmable,	0.01		150	ms
VOUT OVP Rising Threshold Range	V _{OUT_OVP_R}	I ² C programmable, 0.1V per step, 5V by default		4.7		5	V
VOUT OVP Threshold Accuracy	VOUT_OVP_ACC	V _{OUT_OVP_R} = 5V		4.7	5	5.3	V
VOUT OVP Rising Deglitch Time	t _{vout_ovp_deg}	Deglitch between and triggering prot	V_{VOUT} rising above $V_{\text{OUT}_\text{OVP}_\text{R}}$ tection action		4		μs
VBAT OVP Rising Threshold Range	$V_{BAT_OVP_R}$	00 01	, 10mV per step, 4.4V by default	3.5		4.77	V
VBAT OVP Threshold Accuracy	V _{BAT_OVP_ACC}	$V_{BAT_OVP_R} = 4.4V$		-0.9		0.9	%

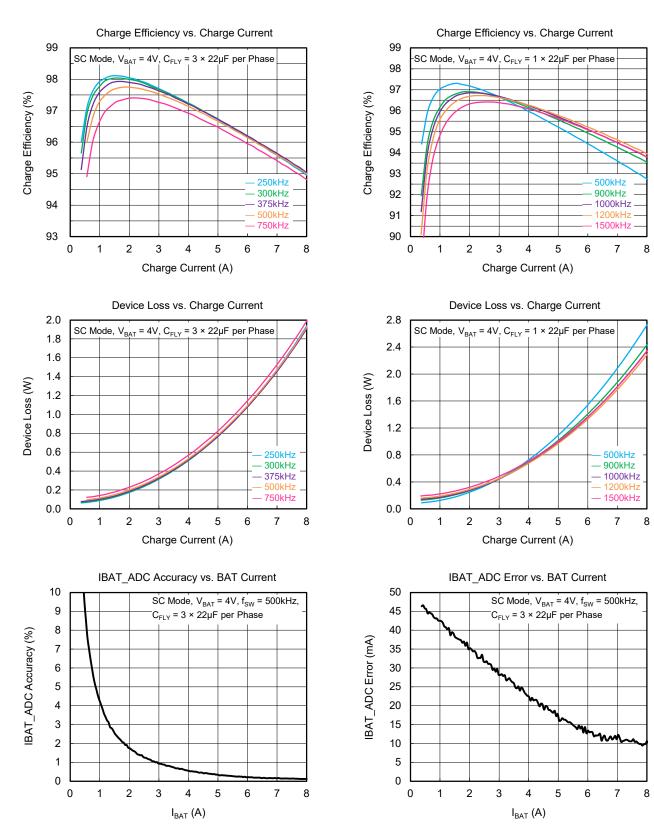
ELECTRICAL CHARACTERISTICS (continued)

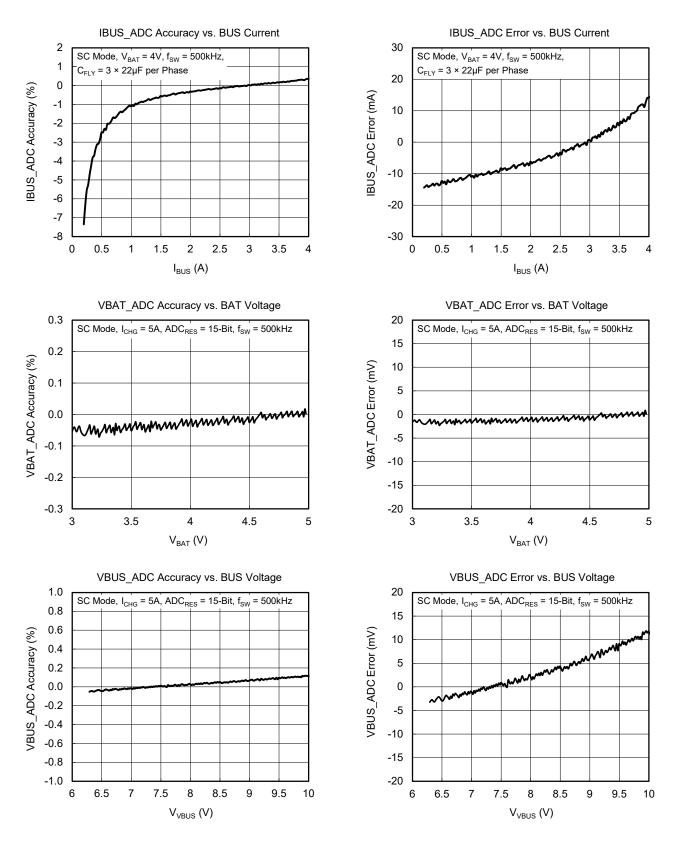
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
VBAT OVP Alarm Rising Threshold Range	V _{BATOVP_ALM_R}	l ² C programmable, 10mV per step, 4.2V by default	3.5		4.77	V	
VBAT OVP Alarm Hysteresis	V _{BATOVP_ALM_HYS}			40		mV	
VBAT OVP Alarm Accuracy	VBATOVP_ALM_ACC	$V_{BATOVP_ALM_R} = 4.4V$	-1.2		1.2	%	
IBAT OCP Threshold Range	I _{BAT_OCP}	I ² C programmable, 7.1A by default, 100mA per step for 2A to 8.5A range, and 300mA per step for 8.5A to 11.2A range	2		11.2	A	
IBAT OCP Threshold Accuracy	I _{BAT_OCP_ACC}	$I_{BAT_OCP} = 8A, R_{SNS} = 2m\Omega$	-2.3		2.3	%	
IBAT OCP Deglitch Time	t _{IBAT_OCP_DEG}	Deglitch between I_{BAT} rising above $I_{\text{BAT}_\text{OCP}}$ and triggering protection action		640		μs	
IBAT OCP Alarm Rising Threshold Range	IBATOCP_ALM_R	I^2C programmable, 100mA per step, 7A by default, R_{SNS} = 2m Ω	0		12.7	А	
IBAT OCP Alarm Threshold Accuracy	IBATOCP_ALM_ACC	$I_{BATOCP_ALM_R} = 8A, R_{SNS} = 2m\Omega$	-3		2.7	%	
IBAT UCP Alarm Threshold Range	IBATUCP_ALM_F	I^2C programmable, 50mA per step, 2A default, R_{SNS} = 2m Ω	0		4.5	А	
IBAT UCP Alarm Threshold Accuracy	IBATUCP_ALM_ACC	$I_{BATUCP_ALM_F}$ = 4.5A, R_{SNS} = 2m Ω	-4.9		3.7	%	
VBUS_HI Rising Threshold	$V_{\text{BUS}_\text{HI}_\text{FALL}}$	$V_{BUS}/(2 \times V_{VOUT})$ in voltage divider mode, V_{BUS}/V_{VOUT} in bypass mode		1.175			
VBUS_HI Falling Threshold	$V_{\text{BUS}_\text{HI}_\text{RISE}}$	$V_{BUS}/(2 \times V_{VOUT})$ in voltage divider mode, V_{BUS}/V_{VOUT} in bypass mode		1.2		- V/V	
VBUS_LO Falling Threshold	$V_{\text{BUS}_\text{LO}_\text{FALL}}$	$V_{BUS}/(2 \times V_{VOUT})$ in voltage divider mode, V_{BUS}/V_{VOUT} in bypass mode		1			
VBUS_LO Rising Threshold	$V_{\text{BUS}_\text{LO}_\text{RISE}}$	V _{BUS} /(2 × V _{VOUT}) in voltage divider mode, V _{BUS} /V _{VOUT} in bypass mode		1.0125			
TSBUS Percentage Fault Threshold Range	TS _{BUS_FLT_F}	I ² C programmable, 0.19531% per step, 4.10151% by default	0		49.8041	%	
TSBUS Percentage Fault Accuracy	TS_{BUSFLT_ACC}	$TS_{BUS_{FLT_{F}}} = 20.12\%$	19.4	20.12	20.8	%	
TSBAT Percentage Fault Threshold Range	$TS_{BAT_FLT_F}$	I ² C programmable, 0.19531% per step, 4.10151% by default	0		49.8041	%	
TSBAT Percentage Fault Accuracy	TS_{BATFLT_ACC}	TS _{BAT_FLT_F} = 20.12%	19.4	20.12	20.8	%	
TDIE OTP Rising Threshold Range	$T_{DIE_OTP_R}$	I ² C programmable, 20°C per step, 140°C by default	80		140	°C	
TDIE OTP Threshold Accuracy	T _{DIE_OTP_ACC}		-6		6	°C	
TDIE OTP Threshold Hysteresis	T _{DIE_OTP_HYS}			30		°C	
TDIE OTP Alarm Rising Threshold Range	$T_{\text{DIEOTP}_{ALM}_R}$	l ² C programmable, 0.5°C per step, 125°C by default	25		150	°C	
TDIE OTP Alarm Threshold Accuracy	$T_{DIEOTP_ALM_ACC}$		-6		6	°C	
TDIE OTP Alarm Threshold Hysteresis	T _{DIEOTP_ALM_HYS}			30		°C	
ADC Specification							
		ADC_SAMPLE[1:0] = 00		16			
ADC Conversion Time for Each	+	ADC_SAMPLE[1:0] = 01		8			
Channel	t _{ADC_CONV}	ADC_SAMPLE[1:0] = 10		4		ms	
		ADC_SAMPLE[1:0] = 11		2		1	
		ADC_SAMPLE[1:0] = 00		15			
		ADC_SAMPLE[1:0] = 01		14		bit	
ADC Resolution	ADC _{RES}	ADC_SAMPLE[1:0] = 10		13			
		ADC_SAMPLE[1:0] = 11		11		-	
ADC IBUS Current Readable in		Effective Range	0		7	А	
REG0x25 and REG0x26	BUS_ADC	LSB		1		mA	

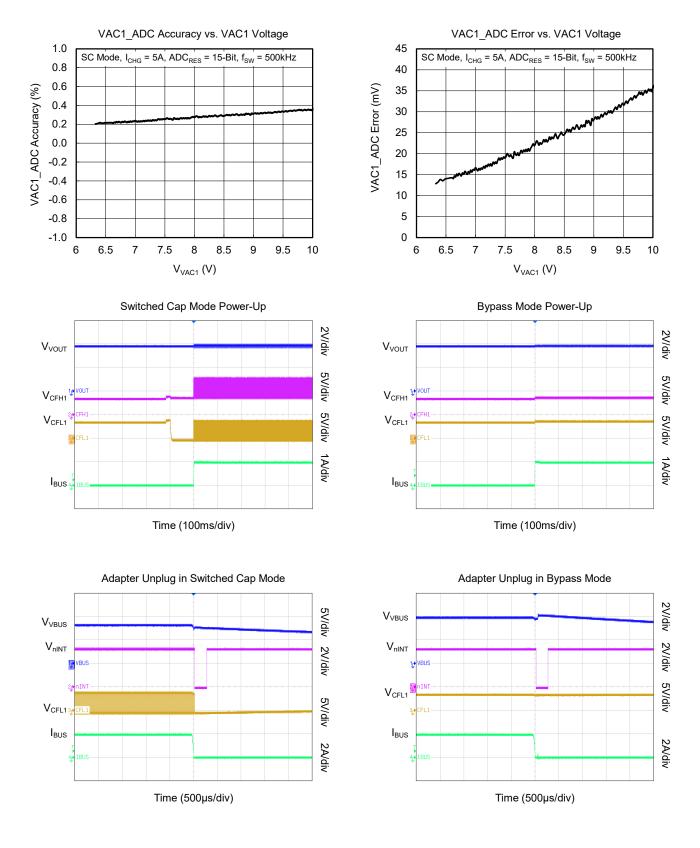
ELECTRICAL CHARACTERISTICS (continued)

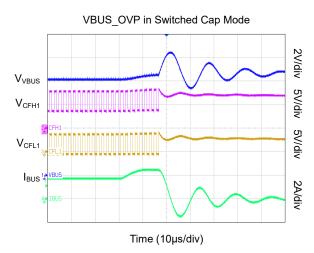
 $(T_J = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ typical values are at } T_J = +25^{\circ}C, \text{ unless otherwise noted.})$

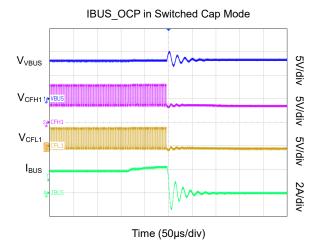
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		$I_{BUS} = 2A, ADC_SAMPLE[1:0] = 00,$ internal accuracy, $T_J = +25^{\circ}C$	-4		3.5	%
IBUS_ADC Accuracy	BUS_ADC_ACC	I _{BUS} = 3A, ADC_SAMPLE[1:0] = 00,	-3.7		3.7	%
		internal accuracy, T _J = +25℃	•		10.00	
ADC VBUS Voltage Readable in REG0x27 and REG0x28	V _{BUS_ADC}	Effective Range	0		16.39	V
		LSB		1		mV
		$V_{VBUS} = 4V, ADC_SAMPLE[1:0] = 00,$	-1		1	%
VBUS_ADC Accuracy	$V_{\text{BUS}_\text{ADC}_\text{ACC}}$	internal accuracy, $T_J = +25^{\circ}C$ $V_{VBUS} = 8V$, ADC SAMPLE[1:0] = 00,				
		internal accuracy, $T_J = +25^{\circ}C$	-1		1	%
ADC VAC1 Voltage Readable in		Effective Range	0		14	V
REG0x29 and REG0x2A	V _{AC1_ADC}	LSB		1		mV
		V _{VAC1} = 4V, ADC_SAMPLE[1:0] = 00,	4			0/
VAC1_ADC Accuracy	V	internal accuracy, T _J = +25°C	-1		1	%
VACI_ADC Accuracy	$V_{\text{AC1}_\text{ADC}_\text{ACC}}$	$V_{VAC1} = 8V$, ADC_SAMPLE[1:0] = 00,	-1		1	%
		internal accuracy, T _J = +25°C			'	
ADC VAC2 Voltage Readable in	V_{AC2_ADC}	Effective Range	0		14	V
REG0x2B and REG0x2C	• AC2_ADC	LSB		1		mV
	Vac2_adc_acc	$V_{VAC2} = 4V, ADC_SAMPLE[1:0] = 00,$	-1		1	%
VAC2_ADC Accuracy		internal accuracy, $T_J = +25^{\circ}C$,,,
		$V_{VAC2} = 8V, ADC_SAMPLE[1:0] = 00,$	-1		1	%
	Vout_adc	internal accuracy, $T_J = +25^{\circ}C$	•			V
ADC VOUT Voltage Readable in REG0x2D and REG0x2E		Effective Range	0		6	•
				1		mV
	V _{OUT_ADC_ACC}	$V_{VOUT} = 4V$, ADC_SAMPLE[1:0] = 00, internal accuracy, $T_J = +25^{\circ}C$	-1		1	%
VOUT_ADC Accuracy		$V_{VOUT} = 4.4V, ADC SAMPLE[1:0] = 00,$				
		internal accuracy, $T_J = +25^{\circ}C$	-1		1	%
ADC VBAT Voltage Readable in		Effective Range	0		6	V
REG0x2F and REG0x30	V _{BAT_ADC}	LSB		1		mV
		V _{BAT} = 4V, ADC_SAMPLE[1:0] = 00,				
		internal accuracy, T _J = +25°C	-0.3		0.3	%
VBAT_ADC Accuracy	$V_{BAT_ADC_ACC}$	$V_{BAT} = 4.4V$, ADC_SAMPLE[1:0] = 00,	-0.3		0.3	%
		internal accuracy, T _J = +25°C	-0.0		0.0	70
ADC IBAT Current Readable in	IBAT_ADC	Effective Range	0		12	Α
REG0x31 and REG0x32	BAT_ADC	LSB		1		mA
IBAT ADC Accuracy	1	$I_{BAT} = 6A, R_{SNS} = 2m\Omega, ADC_SAMPLE[1:0] = 00$	-1.3		1.8	%
IBAT_ADC Accuracy	BAT_ADC_ACC	$I_{BAT} = 8A, R_{SNS} = 2m\Omega, ADC_SAMPLE[1:0] = 00$	-1.4		1.5	%
ADC TSBUS Pin Percentage	TO	Effective Range	0		50	%
Readable in REG0x33 and REG0x34	TS_{BUS_ADC}	LSB		0.0977		%
TSBUS ADC Accuracy	TSBUS ADC ACC	TSBUS = 20% of V _{REGN} , ADC SAMPLE[1:0] = 00	18.6	20	20.9	%
ADC TSBAT Pin Percentage		Effective Range	0		50	%
Readable in REG0x35 and REG0x36	TS_{BAT_ADC}	LSB		0.0977		%
TSBAT_ADC Accuracy	TSBAT_ADC_ACC	TSBAT = 20% of V_{REGN} , ADC_SAMPLE[1:0] = 00	18.6	20	20.9	%
_ /		Effective Range	-40		150	°C
ADC DIE Temperature Readable in REG0x37 and REG0x38	T_{DIE_ADC}	LSB		0.5		°C

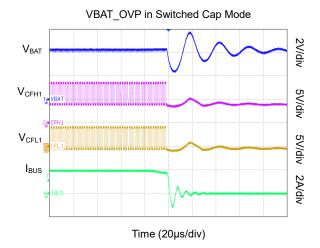


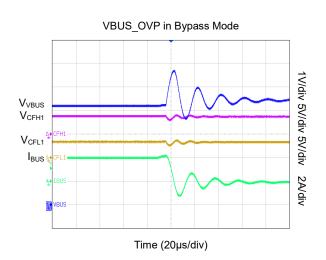

ELECTRICAL CHARACTERISTICS (continued)

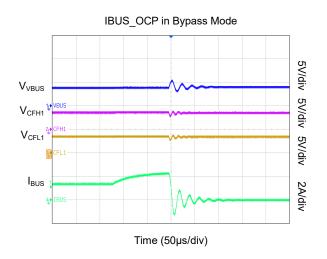

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
I ² C Interface (SCL and SDA Pins)			I			
High Level Input Voltage	V _{IH_I2C}	SCL and SDA pins	0.825			V
Low Level Input Voltage	V _{IL_I2C}	SCL and SDA pins			0.4	V
Low Level Output Voltage	V _{OL_SDA}	Sink 5mA, SDA pin			0.4	V
High-Level Leakage Current	I _{LKG_I2C}	Connected to 1.2V			1	μA
SCL Clock Frequency	f _{CLK}				1000	kHz
Logic Output Pin (nINT, TSBAT_SYN	NCOUT)					
Low Level Output Voltage, nINT Pin	V _{OL_INT}	Sink 5mA			0.4	V
High-Level Leakage Current, nINT Pin	I _{LKG_nINT}	Connected to 1.2V			1	μA
Low Level Output Voltage, TSBAT_ SYNCOUT Pin	V _{OL_TSBAT_SYNCOUT}	Sink 5mA			0.4	V
High-Level Leakage Current, TSBAT_ SYNCOUT Pin	ILKG_TSBAT_SYNCOUT	Connected to 1.2V			1	μA
Logic Input Pin (SRN_SYNCIN)						
High Level Input Voltage, SRN_SYNCIN Pin	VIH_SRN_SYNCIN		0.825			V
Low Level Input Voltage, SRN_SYNCIN Pin	VIL_SRN_SYNCIN				0.4	V
High-Level Leakage Current, SRN_SYNCIN Pin	I _{LKG_SRN_SYNCIN}	Connected to 1.8V			1	μA
Timing Requirement	•					
Time between Consecutive Faults for ALM Indication	t _{ALM_DEBOUNCE}			120		ms

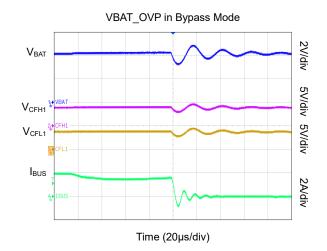

TYPICAL PERFORMANCE CHARACTERISTICS

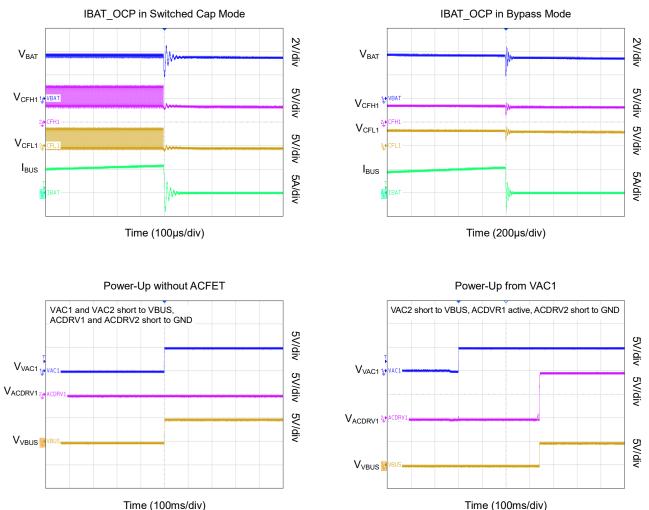







SGM41606S





SG Micro Corp

Time (100ms/div)

TYPICAL APPLICATION CIRCUITS

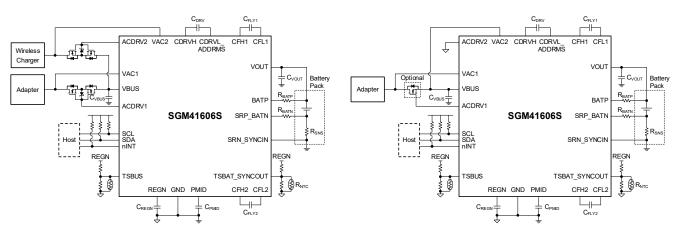
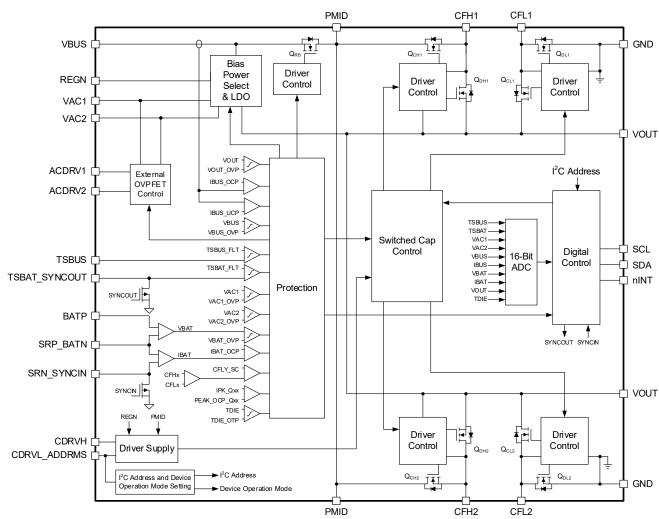
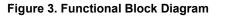




Figure 1. Typical Application Circuit with Dual Input

Figure 2. Typical Application Circuit with Single Input

FUNCTIONAL BLOCK DIAGRAM

DETAILED DESCRIPTION

The SGM41606S is an efficient 8A switched-capacitor battery charging device with I^2C control that can operate either in charge-pump voltage divider mode or in bypass mode. It can charge 1-cell Li-lon or Li-polymer battery in a wide 3.6V to 12V input voltage range (VBUS) from smart wall adapters or wireless charger. The switched-capacitor architecture is optimized for 50% duty cycle to cut the input current to one-half of the battery current and reduce the wiring drops, losses and temperature rise in the application.

A two-channel switched-capacitor topology is used to reduce the required input capacitors, improve efficiency and minimize the output ripple. It supports dual input configuration through integrated MUX control and driver for external OVPFETs. It also allows single input with no external OVPFET or single OVPFET. Moreover, it supports two devices in parallel for higher power systems.

A high speed 16-bit ADC converter is also included to provide bus voltage, bus current, battery voltage, battery current, battery and cable connector temperature, and die temperature information for the charge management host via l²C serial interface.

Charge-Pump Voltage Divider Mode

The charge-pump voltage divider mode operates with a fixed 50% duty cycle. Taking one of the two channels in the switched-capacitor as an example, the basic principle of operation is shown in Figure 4. In period 1, Q1 and Q3 are tuned on and V_{PMID} charges the C_{FLY} and the battery (in series) such that:

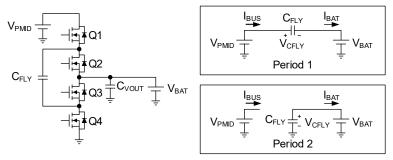
$$V_{CFLY} = V_{PMID} - V_{BAT}$$
(1)

In period 2, Q2 and Q4 are turned on and C_{FLY} appears in parallel with the battery:

$$V_{CFLY} = V_{BAT}$$
(2)

Ignoring the small fluctuation of the capacitor and battery voltages in period 1 and 2 in steady state operation, Equation 1 and 2 can be combined to calculate capacitor voltage:

$$V_{CFLY} = V_{BAT} = V_{PMID}/2$$
(3)


Ignoring small energy loss in each switching period, the input and output cycle-average powers are equal. Therefore,

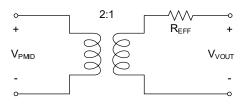
IBUS

$$V_{\text{PMID}} \times I_{\text{BUS}} = V_{\text{BAT}} \times I_{\text{BAT}}$$
(4)

or

$$= I_{BAT}/2$$
(5)

Figure 4. Voltage Divider Charger Operating Principle


Assuming no charge leakage path and considering R_{EFF} as the effective input to output resistance (due to the switch on-resistances and C_{FLY} losses), the divider can be modeled as shown in Figure 5. Using this model, the output voltage is half of the input voltage under no load conditions as explained before. The SGM41606S has two channels of such architecture operating at f_{SW} frequency with 180° phase difference. Each channel provides I_{VOUT}/2 at the VOUT node, so:

$$V_{\text{VOUT}} = \frac{1}{2} V_{\text{PMID}} - \frac{1}{2} R_{\text{EFF}} \times I_{\text{VOUT}}$$
(6)

DETAILED DESCRIPTION (continued)

At low switching frequencies the capacitor charge sharing losses are dominant and $R_{EFF} \approx 1/(4f_{SW}C_{FLY})$. As frequency increases, R_{EFF} finally approaches ($R_{DS_QCH} + R_{DS_QCL} + R_{DS_QLL} + R_{DS_QLL})/2$.

Figure 5. Model of Voltage Divider

The two-channel interleaved operation ensures a smooth input current and simplifies the noise filtering. The VOUT ripple can be estimated by first order approximation of C_{FLY} voltage drop due to the discharge in the half period, plus the discharge drop during the short dead time.

Selecting high quality C_{FLY} capacitors and proper switching frequency are the key factors for a well performing capacitor voltage divider. Switching frequency selection is a trade-off between efficiency and capacitor size. Lower frequency increases efficiency by reducing switching losses but requires larger capacitance to maintain low output ripple and low output impedance (R_{EFF}). An optimum switching frequency can be found for any selected C_{FLY} capacitor to minimize losses.

Bypass Mode

The SGM41606S is designed to operate in bypass mode when V_{VBUS} is close to the V_{VOUT} . When such valid voltage is present on VBUS, the device can enable bypass mode by setting EN_BYPASS = 1 and all switches between VBUS and VOUT are fully turned on while the other switches are kept off. When V_{VBUS} is near V_{VOUT} , the bypass mode offers the best efficiency and the device is capable of sourcing up to 5A. The bypass mode switched-capacitor charger is showed in Figure 6.

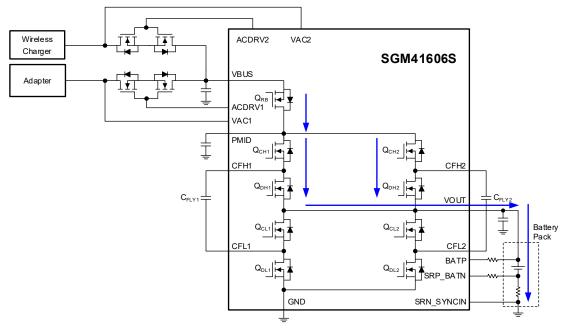


Figure 6. SGM41606S Bypass Mode

The output voltage is close to the V_{VBUS} minus a voltage drop caused by the on-resistances of the RBFET plus the two high-side switches of the two channels in parallel:

 $R_{EFF} (Bypass mode) \approx R_{DS_QRB} + (R_{DS_QCH1} + R_{DS_QDH1}) \parallel (R_{DS_QCH2} + R_{DS_QDH2})$ (7)

where $R_{DS QXX}$ is the on-resistance of the switch Q_{XX} .

DETAILED DESCRIPTION (continued)

Charging System

The SGM41606S is a slave charger device and needs a host. The host must set up all protection functions and disable the main charger before enabling the SGM41606S. The host must monitor the nINT interrupts especially during high current charging. It must also communicate with the wall adapter to control the charge current.

Figure 7 shows the block diagram of a charge system using the SGM41606S along with other devices. In this system, the PD controller is used to communicate with adapter by PD protocol. When the smart wall adapter is inserted, the AP unit controls the switching charger (SGM41516) that powers the load system and the switched capacitor charger (SGM41606S) that provides high current charging. The communication between those devices is through I²C interface.

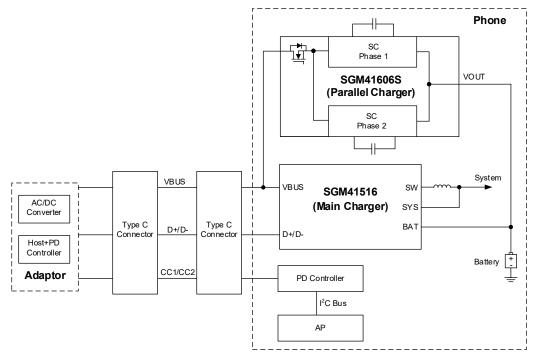
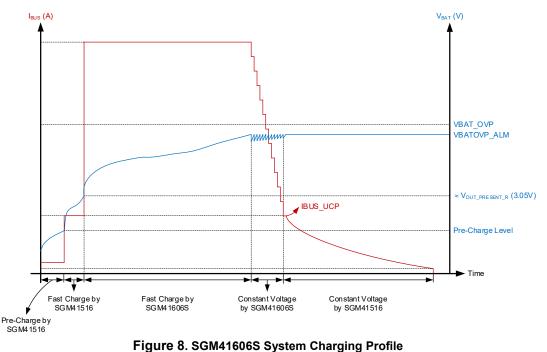



Figure 7. SGM41606S Charging System Diagram

DETAILED DESCRIPTION (continued)

A typical charge profile for a high-capacity battery using switching charger and switched capacitor charger together is shown in Figure 8. During the trickle charge and pre-charge, the charging is controlled by the switching charger. Once the battery voltage reaches $V_{OUT_PRESENT_R}$ (3.05V, TYP), the adapter can negotiate for a higher bus voltage and enable the SGM41606S for charging (bypass or voltage divider mode). Once the battery voltage approaches the V_{BATOVP_ALM} point, the SGM41606S will notify the AP to reduce the IBUS current, and the AP will negotiate with adapter for a lower bus voltage to effectively taper the current until a point where the IBUS current ramps down below I_{BUS_UCP} .

Startup Sequence

The SGM41606S is powered from the greater of VAC1, VAC2, VBUS or VOUT (VAC1 and VAC2 are used as sense inputs for adapter voltages as well). When V_{VOUT} rises above $V_{OUT_UVLO_R}$, or V_{VAC1} , V_{VAC2} or V_{VBUS} rises above their respective UVLO rising threshold, the I²C interface is ready for communication and all the registers are reset to default values.

The device does not start charging after power-up, because by default the charger is disabled but the ADC can be enabled and the AP can read the system parameters before enabling charge. The charge can be enabled only if $V_{VBUS} > V_{BUS_{PRESENT_R}}$ and $V_{VOUT} > V_{OUT_{PRESENT_R}}$.

Device Power-Up from Battery without Input Source

To reduce the quiescent current and maximize the battery run time when it is the only available source, the REGN LDO and most of the sensing circuits are turned off, except VAC1_PRESENT, VAC2_PRESENT, BUS_PRESENT and VOUT_PRESENT functions.

Device Power-Up from Input Source

When an input source is plugged-in and the conditions of $V_{VBUS} > V_{BUS_PRESENT_R}$ and $V_{VOUT} > V_{OUT_PRESENT_R}$ are valid, the AP must initialize all protections to the desired thresholds before enabling charge. The protection thresholds that need to be set are VAC1_OVP, VAC2_OVP, VBUS_OVP, IBUS_OCP, IBUS_UCP, VOUT_OVP, VBAT_OVP, IBAT_OCP, TSBUS_FLT, TSBAT_FLT and TDIE_OTP. If one of the protection trigger conditions is met, the charger stops switching. It will also be turned off the corresponding external OVPFETs when VAC1_OVP or VAC2_OVP or VBUS_SCP event occurs.

After setting protections, the VBUS voltage is checked to be between VBUS_ERRLO and VBUS_ERRHI to allow forward charge mode operation. When the AP configures bypass or voltage divider mode by setting EN_BYPASS = 0 or 1 and then set CHG_EN = 1, charging is enabled and current flows into the battery, and CONV_ACTIVE_STAT bit is set to 1 to indicate charging is active. Then raising the VBUS voltage will increase the battery charge current. When the converter is on, any command to change the charge mode is ignored. To do so, the charging must be disabled first, and then the charge mode can be changed by I^2C serial interface.

Device HIZ State

The HIZ mode is activated when the AP sets EN_HIZ bit from 0 to 1. When the SGM41606S enters HIZ mode, the charging stops, ADC conversion discontinues, ACDRV and REGN LDO are turned off regardless of the presence of the adaptor or absence of any fault conditions. To exit HIZ mode, the AP should set EN_HIZ to 0, or the device POR occurs.

REGN Management

REGN provides the power required for the analog section. When V_{VOUT} is higher than $V_{OUT_PRESENT_R}$ and V_{VBUS} rise above $V_{BUS_PRESENT_R}$, REGN is powered up and ramps up to 5V (TYP). A 4.7µF or larger capacitor is required on the REGN pin.

When the faults, including VBUS_OVP, VBAT_OVP, VOUT_OVP, IBUS_OCP, IBAT_OCP, IBUS_UCP, VBUS_SCP, VAC1_OVP, VAC2_OVP, TSBUS_FLT, TSBAT_FLT and TDIE_OTP, are triggered, the converter switching stops and CHG_EN bit is reset to 0, but the REGN LDO remains powered up. Refer to the device protection section for more details.

DETAILED DESCRIPTION (continued)

Dual Input Power Path Management

The SGM41606S features two ACDRV pins to drive two sets of back-to-back N-channel MOSFETs, which select and manage the input power from two different input sources (such as wired and wireless input sources). Each set of back-to-back N-channel FETs consists of an input N-channel MOSFET (ACFET) and a reverse-blocking N-channel MOSFET (RBFET). During POR procedure, the internal bias circuit detects whether the ACDRVx pin is shorted to GND to sense whether the ACFET-RBFET are connected, and then updates the ACRB1_CONFIG_STAT and ACRB2_CONFIG_STAT bits to indicate the connection status of ACFET-RBFET. If the external back-to-back N-channel FETs are not populated in the schematic, then tie corresponding VAC pin to VBUS and short ACDRVx to GND. The device supports 4 input configurations: single input without any external FET, single input with only one ACFET, dual input with one set of ACFET-RBFET, and dual input with two sets of ACFET-RBFET. Detailed descriptions of the power-up sequences for different applications are provided below.

ACDRV Turn-on Condition

For most of the 4 configurations, the ACDRV controls the input power path for both SGM41606S and main charger. When one or both input power sources are plugged in (not in OTG mode), the ACDRV can be turned on when all of the following conditions are met:

- 1. The corresponding ACFET-RBFET is populated: VAC is connected to the input power and ACDRV is not short to GND.
- 2. V_{VAC} exceeds $V_{AC_PRESENT_R}$ and not higher than V_{AC_OVP} thresholds.
- 3. DIS_ACDRV_BOTH is not set to 1.
- 4. Not in HIZ mode: EN_HIZ is not set to 1.
- 5. V_{VBUS} is below $V_{BUS_PRESENT_F}$ threshold.

Single Input without ACFET-RBFET

In this configuration, the SGM41606S is not responsible for controlling the external OVPFET. VAC1 and VAC2 are both connected to VBUS directly, while ACDRV1 and ACDRV2 are both shorted to GND. The following table summarizes the related pin connections and the control function of relevant registers, as well as the status bits.

Table 1. Single Input without External OVPFET

Input Configuration	Single Input
External FET Connection	No external FET
Input Sense Pin Connection	VAC1 and VAC2 tied to VBUS
ACDRV Pin Connection	ACDRV1 and ACDRV2 short to GND
ACDRV1_STAT	0
ACDRV2_STAT	0
DIS_ACDRV_BOTH	1
ACRB1_CONFIG_STAT	0 = ACFET1-RBFET1 is not placed
ACRB2_CONFIG_STAT	0 = ACFET2-RBFET2 is not placed
EN_HIZ	No impact on ACDRV

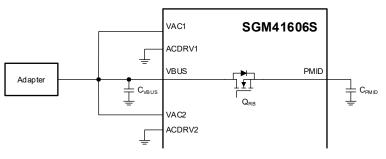


Figure 9. Single Input without ACFET-RBFET

DETAILED DESCRIPTION (continued)

Single Input with ACFET1

In this configuration, only one input N-channel MOSFET for VAC1 (ACFET1) is placed. RBFET1 and ACFET2-RBFET2 are not used. VAC1 and ACDRV1 are connected to the drain and the gate of ACFET1, respectively. VAC2 is tied to VBUS, and ACDRV2 is shorted to GND. This structure supports single input from VAC1. The following table summarizes the related pin connections and the control function of relevant registers, as well as the status bits.

Table 2. Single Input with Single OVPFET

Input Configuration	Single Input
External FET Connection	Only ACFET1, no RBFET1 and ACFET2-RBFET2
Input Sense Pin Connection	VAC1 tied to the input source, VAC2 short to VBUS
ACDRV Pin Connection	ACDRV1 tied to the gate of ACFET1, ACDRV2 short to GND
ACDRV1_STAT	1 = ACDRV1 is ON 0 = ACDRV1 is OFF
ACDRV2_STAT	0
DIS_ACDRV_BOTH	1 = Force ACDRV1 OFF 0 = ACDRV1 can be turned on when the activation conditions of ACDRV are valid
ACRB1_CONFIG_STAT	1 = ACFET1 is placed
ACRB2_CONFIG_STAT	0 = ACFET2-RBFET2 is not placed
EN_HIZ	1 = Enter HIZ mode, force ACDRV1 OFF 0 = Exit HIZ mode, ACDRV1 can be turned on when the activation conditions of ACDRV are valid

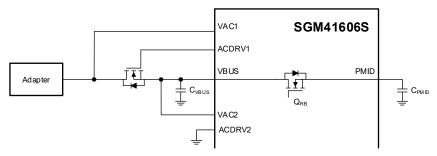
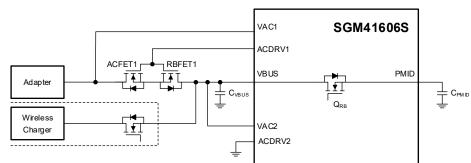
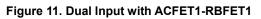


Figure 10. Single Input with ACFET1

Dual Input with ACFET1-RBFET1


In this configuration, only one set of back-to-back N-MOSFET for VAC1 is placed. VAC1 is connected to the drain of ACFET1. ACDRV1 is connected to the common gate of ACFET1-RBFET1. VAC2 is tied to VBUS and ACDRV2 is shorted to GND. This structure is able to support single input from VAC1. The following table summarizes the related pins connection and the control function of relevant registers, as well as the status bits.


Table 3. Dual Input with ACFET1-RBFET1

Input Configuration	Dual Input
External FET Connection	ACFET1-RBFET1, no ACFET2-RBFET2
Input Sense Pin Connection	VAC1 tied to the input source, VAC2 short to VBUS
ACDRV Pin Connection	ACDRV1 tied to the common gate of ACFET1-RBFET1, ACDRV2 short to GND
ACDRV1_STAT	1 = ACDRV1 ON 0 = ACDRV1 OFF
ACDRV2_STAT	0
DIS_ACDRV_BOTH	1 = Force ACDRV1 OFF 0 = ACDRV1 can be turned on when the activation conditions of ACDRV are valid
ACRB1_CONFIG_STAT	1 = ACFET1-RBFET1 is placed
ACRB2_CONFIG_STAT	0 = ACFET2-RBFET2 is not placed
EN_HIZ	1 = Enter HIZ mode, force ACDRV1 OFF 0 = Exit HIZ mode, ACDRV1 can be turned on when the activation conditions of ACDRV are valid

DETAILED DESCRIPTION (continued)

Input Source Swap with ACFET1-RBFET1

To switch the input source from VAC1 to wireless input, the AP should turn off ACDRV1 by setting DIS_ACDRV_BOTH = 1 to avoid that the two input sources are shorted together. In this configuration, writing ACDRV1_STAT = 0 will be ignored by SGM41606S. After the ACFET1-RBFET1 is turned off and V_{VBUS} drops below $V_{BUS_PRESENT_F}$, the AP can enable the wireless input.

To switch the input source from wireless input to VAC1, the AP should remove or disable the wireless input first, and then set $DIS_ACDRV_BOTH = 0$ to turn on ACDRV1 after V_{VBUS} drops below $V_{BUS_PRESENT_F}$.

Dual Input with ACFET1-RBFET1 and ACFET2-RBFET2

In this configuration, both sets of back-to-back N-MOSFET for VAC1 and VAC2 are placed and SGM41606S supports dual input source from VAC1 and VAC2. The following table summarizes the related pin connections and the control function of relevant registers, as well as the status bits.

Table 4. Dual Input with Both ACFET1-RBFET1 and ACFET2-RBFET2

Input Configuration	Dual Input
External FET Connection	ACFET1-RBFET1, ACFET1-RBFET2
Input Sense Pin Connection	VAC1 tied to input source 1, VAC2 tied to input source 2
ACDRV Pin Connection	ACDRV1 tied to the common gate of ACFET1-RBFET1 ACDRV2 tied to the common gate of ACFET2-RBFET2
ACDRV1_STAT	1 = ACDRV1 ON 0 = ACDRV1 OFF In dual input configuration, the AP can use this bit to swap the input source if both input sources are valid
ACDRV2_STAT	1 = ACDRV2 ON 0 = ACDRV2 OFF In dual input configuration, the AP can use this bit to swap the input source if both input sources are valid
DIS_ACDRV_BOTH	1 = Force both ACDRV to turn off, both ACDRV1_STAT and ACDRV2_STAT become 0 0 = ACDRV1 or ACDRV2 can be turned on when the activation conditions of ACDRV are valid If VAC1 and VAC2 become valid at the same time, ACDRV1 will be turned on with a higher priority, and ACDRV2 will be forcibly turned off
ACRB1_CONFIG_STAT	1 = ACFET1-RBFET1 is placed
ACRB2_CONFIG_STAT	1 = ACFET2-RBFET2 is placed
EN_HIZ	1 = Enter HIZ mode, force both ACDRV1 and ACDRV2 to turn off 0 = Exit HIZ mode, ACDRV1 or ACDRV2 can be turned on when the activation conditions of ACDRV are valid If VAC1 and VAC2 become valid at the same time, ACDRV1 will be turned on with a higher priority, and ACDRV2 will be forcibly turned off

DETAILED DESCRIPTION (continued)

Input Source Swap with ACFET1-RBFET1 and ACFET-RBFET2

Three examples are provided below to illustrate the process of swapping the input source from VAC1 to VAC2 (the procedure for swapping from VAC2 to VAC1 is similar).

VAC2 is plugged in after VAC1 is removed

1. When VAC1 is removed and V_{VAC1} drops below $V_{AC_PRESENT_F}$, ACDRV1 will be turned off automatically, and V_{VBUS} will slowly drop below $V_{BUS_PRESENT_F}$. The AP can write 1 to the VBUS pull-down resistor enable bit (VBUS_PDN_EN) as needed to expedite the discharge for VBUS.

2. After VAC1 is removed, VAC2 is plugged in, and then the device will turn on ACDRV2 until V_{VBUS} drops below $V_{BUS_{PRESENT_F}}$. In this situation, the swapping procedure from VAC1 to VAC2 is controlled by SGM41606S and does not require intervention from the AP.

Both VAC1 and VAC2 are valid, the AP controls the swap from VAC1 to VAC2

1. Both VAC1 and VAC2 are valid, ACDRV1 has been turned on, and ACDRV2 is off.

2. The AP can set REG0x0F[1:0] (ACDRV1_STAT, ACDRV2_STAT) from 10b to 01b, the ACDRV1 will be turned off and then ACDRV2 will be turned on until V_{VBUS} drops below $V_{BUS_{PRESENT_F}}$.

In this situation, the on/off states of the two sets of back-to-back N-MOSFET are controlled by the AP. Note that writing REG0x0F[1:0] = 00 (to set ACDRV1_STAT = 0 and ACDRV2_STAT = 0 simultaneously) will be ignored. The AP can write DIS_ACDRV_BOTH = 1 to turn off both two sets of back-to-back N-MOSFET.

If VAC1 becomes invalid when ACDRV1 is on, the device will automatically swap to VAC2

1. Both VAC1 and VAC2 are valid, ACDRV1 has been turned on, and ACDRV2 is off.

2. When VAC1 becomes invalid (V_{VAC1} drops below $V_{AC_PRESENT_F}$ or rises above $V_{AC_OVP_R}$), the device will turn off ACDRV1, and then turn on ACDRV2 until V_{VBUS} drops below $V_{BUS_PRESENT_F}$.

In this situation, the on/off state of the two sets of back-to-back N-MOSFET is controlled by SGM41606S.

OTG Mode Operation

If the switching charger works in OTG mode and the two sets of back-to-back N-MOSFET is controlled by SGM41606S, they must be turned on/off manually, depending on which port is desired for OTG output. The corresponding external OVPFETs will be turned off when VAC1_OVP, VAC2_OVP, or VBUS_OVP fault occurs.

To enter OTG mode, the AP needs to follow the steps outlined below:

- 1. The AP enables OTG mode for switching charger.
- 2. The AP writes EN_OTG = 1.
- 3. SGM41606S sets DIS_ACDRV_BOTH = 1 automatically.
- 4. The AP writes DIS_ACDRV_BOTH = 0 to allow ACDRV to be enabled, and then writes ACDRV1_STAT = 1 or ACDRV2_STAT
- = 1 or both, depending on which port is desired for OTG output.

DETAILED DESCRIPTION (continued)

5. If VAC1_OVP or VAC2_OVP or VBUS_OVP fault occurs, SGM41606S will turn off the corresponding external OVPFETs but will not reset EN_OTG. After the fault is cleared, the AP needs to write ACDRV1_STAT = 1 or ACDRV2_STAT = 1 or both to enable OTG output again. It is recommended to set V_{AC1_OVP} and V_{AC2_OVP} to the same threshold in OTG mode.

6. To disable OTG output, the AP needs to set ACDRV1_STAT = 0 or ACDRV2_STAT = 0 or DIS_ACDRV_BOTH = 1, and can write 1 to the VAC1/VAC2/VBUS pull-down resistor enable bits (VAC1_PDN_EN/VAC2_PDN_EN/VBUS_PDN_EN) as needed to discharge the residual energy.

To exit OTG mode, the AP needs to follow the steps outlined below:

1. The AP disables OTG mode for switching charger.

2. The AP writes 1 to the VAC1/VAC2/VBUS pull-down resistor enable bits (VAC1_PDN_EN/VAC2_PDN_EN/VBUS_PDN_EN) as needed to discharge the residual energy.

3. After VBUS and VAC are discharged, the AP writes ACDRV1_STAT = 0 or ACDRV2_STAT = 0 or DIS_ACDRV_BOTH = 1 to turn off ACDRV.

4. The AP writes EN_OTG = 0 to exit OTG mode.

ADC

The SGM41606S integrates a fast 10-channel, 16-bit ADC converter to monitor input/output currents and voltages, as well as the temperature of the device, battery, and cable connector. The ADC is controlled by the ADC_CONTROL 1 and ADC_CONTROL 2 registers. Setting the ADC_EN bit to 1 enables the ADC. This bit can be used to turn off the ADC and save power when it is not needed. The ADC_RATE bit allows choosing continuous conversion or 1-shot conversion mode. The ADC_AVG bit is utilized to enable or disable ADC averaging (disabled default), and the ADC_AVG_INIT bit can be used to choose the average initial value (use an existing register value or a new value). The ADC operates independently of the faults, unless the AP sets the ADC_EN bit to 0.

The ADC can operate if $V_{VAC} > V_{AC_PRESENT_R}$ or $V_{VBUS} > V_{BUS_PRESENT_R}$ or $V_{VOUT} > V_{OUT_PRESENT_R}$ condition is valid. Otherwise, the ADC conversion is postponed until one of them is satisfied. The ADC readings are valid only for DC values and not for transients.

By default, all ADC channels are converted in continuous conversion mode except the channels disabled by the ADC_CONTROL 1 and ADC_CONTROL 2 registers. If the 1-shot conversion mode is selected, the ADC_DONE_FLAG bit is set to 1 when all channels are converted, then the ADC_EN bit is reset to 0. In the continuous conversion mode, the ADC_DONE_FLAG bit is set to 0.

CDRVH and CDRVL_ADDRMS Functions

A 0.22μ F MLCC capacitor is required between the CDRVH and CDRVL_ADDRMS pins to provide driver supply. In addition, the CDRVL_ADDRMS pin is used to set the default I²C address and operation mode of the device during the POR procedure. Refer to Table 5 to choose the appropriate resistor from CDRVL_ADDRMS pin to GND for desired configuration. It is recommended to utilize a surface mount resistor with a tolerance of either ±1% or ±2%. After POR procedure, the AP can read the operation mode of the device from MS[1:0] bits in CHARGER_CONTROL 5 register.

Resister Value to GND on CDRVL_ADDRMS (kΩ)	I ² C Address	Configuration
>75.0	0x65	Standalone
6.19	0x67	Standalone
7.5	0x66	Secondary for Parallel Charging
10.2	0x66	Primary for Parallel Charging
13.3	0x66	Standalone
17.8	0x67	Secondary for Parallel Charging
27.4	0x65	Primary for Parallel Charging

Table 5. Selection for I²C Address and Operation Mode

DETAILED DESCRIPTION (continued)

Parallel Operation

To achieve higher charging current, it is feasible to use two devices in parallel, with one configured in primary mode and the other in secondary mode. Using two devices in parallel can also enable each device to operate at a lower charging current, resulting in the higher efficiency compared with single device at the same total charging current. During POR procedure, the CDRVL_ADDRMS pin is used to determine the operation mode of the device. Refer to Table 5 for selecting appropriate resistor from CDRVL_ADDRMS pin to GND.

The parallel charging configuration for dual-charger is shown in Figure 13. When set as the primary, the TSBAT_SYNCOUT pin functions as the synchronization signal output pin, while the SRN_SYNCIN pin operates as SRN. When set as the secondary, the SRN_SYNCIN pin functions as the synchronization signal input pin, and the TSBAT_SYNCOUT pin operates as TSBAT. The TSBAT_SYNCOUT pin of the primary should be tied to the SRN_SYNCIN pin of the secondary, and should be pulled up to REGN of the primary through a 1k Ω resistor. The external OVPFETs are controlled by the primary, and the ACDRVx pins of the secondary should short to GND.

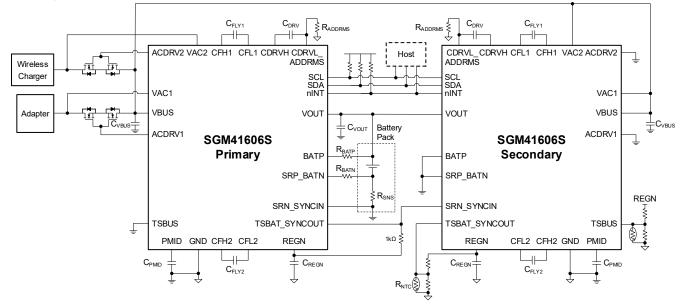


Figure 13. Parallel Operation of SGM41606S

The parallel charging configuration can operate in both bypass mode and voltage divider mode. The distribution of current between the primary and secondary is influenced by the loop impedance, and the chargers do not automatically balance it. To achieve current balance, it is essential to design the board layout with maximum symmetry.

nINT Pin, STAT, Flag and Mask Bits

The nINT pin is an open-drain output and must be pulled up to a logic high rail. It is pulled low with a duration of t_{INT} to notify the AP when it is triggered by an event. See the register map for all event flag and control bits.

When an event occurs, a nINT signal is sent to the AP, and the corresponding status and flag bits are set to 1. The flag bit can be read to clear but the status bit remains as 1 if the event is still present. The nINT signal is not sent again if an event is still present after the flag bit is read cleared, unless another kind of event occurs. If an event mask bit is set, that event will not send nINT signal, but the flag bit is still updated independent of the mask bit.

DETAILED DESCRIPTION (continued)

Input Over-Voltage Protection (VAC1_OVP, VAC2_OVP)

The SGM41606S monitors the adapter voltage on the VAC1/VAC2 pin to use the ACDRV1/ACDRV2 output to control the external OVPFETs respectively. Taking VAC1_OVP as an example, the VAC1 over-voltage protection circuit is enabled if V_{VAC1} rises above $V_{AC_PRESENT_R}$. If V_{VAC1} is above $V_{AC_PRESENT_R}$ for at least $t_{VAC_IN_DEG}$ time and DIS_ACDRV_BOTH = 0, the ACDRV1 will output drive signal to turn on the ACFET1-RBFET1. If the V_{AC1} reaches the $V_{AC_OVP_R}$ threshold, the gate voltage starts to drop and eventually the ACFET1-RBFET1 is fully turned off. Figure 14 shows the VAC_OVP and ACDRV operation timings. The $V_{AC_OVP_R}$ threshold can be set by I²C serial interface. The adapter voltage must never exceed the absolute maximum rating of the VAC1/VAC2 pin and the external OVPFETs.

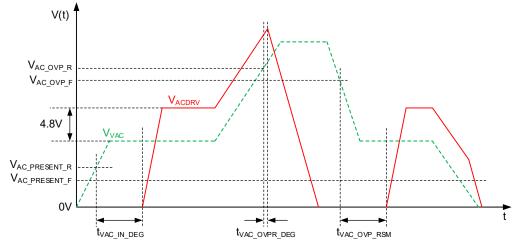


Figure 14. ACDRV Operation Timing

Input Short-Circuit Protection (VBUS_SCP)

The VBUS_SCP function monitors the VBUS pin for short-circuit. This function is enabled if the external OVPFETs are turned on or if V_{VBUS} rises above $V_{BUS_{PRESENT_R}}$. If the V_{VBUS} falls below 3V, charging is stopped. CHG_EN bit is reset to 0 (disable). Also, BUSSCP_STAT and BUSSCP_FLAG bits are set to 1, and an INT pulse is asserted. The device will wait for 760ms before automatically re-enabling and initiating startup sequence.

VBUS Charge Voltage Range (VBUS_ERRLO & VBUS_ERRHI)

The VBUS_ERRLO and VBUS_ERRHI functions are included to avoid problems due to wrong VBUS setting for forward charging. In bypass mode, if V_{VBUS} is beyond the range between $V_{BUS_{ERRLO}}$ and $V_{BUS_{ERRHI}}$, CHG_EN will be reset to 0 and Q_{RB} will be turned off. In voltage divider charging mode, if $V_{VBUS} < V_{BUS_{ERRLO}}$, CHG_EN will be reset to 0 and Q_{RB} will be turned off, but if $V_{VBUS} > V_{BUS_{ERRHI}}$, the device remains in charge initiation operation. Once V_{VBUS} is within the charge range, charging will start and VBUS_ERRLO and VBUS_ERRHI functions will be disabled.

Input, Output and Battery Over-Voltage Protection (VBUS_OVP, VOUT_OVP and VBAT_OVP)

The VBUS_OVP, VOUT_OVP and VBAT_OVP functions detect input and output voltage conditions. If either input or output voltage is higher than the protection threshold, the device stops charging and resets CHG_EN bit to 0 (disable). The VBUS_OVP function monitors VBUS pin voltage. The VOUT_OVP function monitors VOUT pin voltage. The VBAT_OVP uses BATP and SRP_BATN remote sense pins to monitor differential voltage between the battery terminals. To minimize the risk of battery terminal short in the manufacturing process, two 100 Ω resistors are needed to connect in series to the BATP and SRP_BATN pins respectively. The VBUS_OVP, VOUT_OVP and VBAT_OVP thresholds can be set by I^2C serial interface.

Input and Battery Over-Current Protection (IBUS_OCP and IBAT_OCP)

The IBUS_OCP function monitors the input current via Q_{RB} . If CHG_EN bit are set to enable charge, the Q_{RB} is turned on and the IBUS_OCP function starts detecting the input current. If the I_{BUS} reaches I_{BUS_OCP} threshold, the device stops charging and resets CHG_EN bit to 0 (disable). The battery current is monitored by the voltage across an external series shunt resistor. This differential voltage is measured between SRP_BATN and SRN_SYNCIN pins. If I_{BAT_OCP} threshold is reached, the device stops charging and resets CHG_EN bit to 0 (disable). The IBUS_OCP and IBAT_OCP thresholds can be set by I^2C serial interface.

DETAILED DESCRIPTION (continued)

Input Under-Current Protection (IBUS_UCP)

The IBUS_UCP function detects the input current via Q_{RB} during forward charging. After charging is started and soft-start time expired, if I_{BUS} is below I_{BUS_UCP} with $t_{IBUS_UCP_DEG}$ deglitch time, the charging will be stopped and CHG_EN bit is reset to 0 (disable). The $t_{IBUS_UCP_DEG}$ timer can be set by I^2C serial interface.

CFLY Diagnosis (CFLY_SHORT)

The CFLY diagnosis function identifies the health of flying capacitors before and during voltage divider switching (charging). The device initialization process is started after CHG_EN bit is set to 1. When V_{VBUS} and V_{BAT} are in the charge range, the flying capacitors in both channels are pre-charged. A CFLY short-circuit is detected if they cannot be charged, and the voltage between V_{CFHx} and V_{CFLx} remains below (V_{VOUT} - 0.6V). If so, the initialization process is stopped and CHG_EN bit is reset to 0 (disable). Even if CFLY capacitors pass the short-circuit test in the initialization process, the CFLY diagnosis function remains active and whenever a V_{CFLY} voltage falls below (V_{VOUT} - 0.6V), the operation is stopped and CHG_EN bit is reset to 0 (disable). The CFLY_SHORT_FLAG bit is set to 1 and an INT pulse is generated as well. During a CFLY short-circuit event, other protection events such as IBUS_OCP, VBAT_OVP or PEAK_OCP may occur.

Converter Peak Over-Current Protection (PEAK_OCP)

The PEAK_OCP function monitors the converter switch operating currents. If the Q_{CLx} or Q_{DLx} current reaches switch OCP threshold ($I_{CONV OCP}$) during charging, the charging is stopped and CHG_EN bit is reset to 0.

TDIE Over-Temperature Protection (TDIE_OTP)

The TDIE_OTP function prevents operation in over-temperature condition. The die temperature is monitored and if the $T_{DIE_OTP_R}$ threshold is reached, the charging is stopped and CHG_EN bit is reset to 0 (disable). The startup sequence cannot be initiated again until the die temperature falls down with a 30°C hysteresis. The TDIE_OTP threshold can be set by I²C serial interface.

Battery and Cable Connector Temperature Monitoring (TSBAT_FLT and TSBUS_FLT)

The SGM41606S monitors battery and cable connector temperature through the TSBAT_SYNCOUT and TSBUS pins, which are connected to the external resistor divider that is pulled up to REGN. A negative coefficient thermistor (NTC) is needed in parallel with the low-side resistor. When the voltage on the TSBUS or TSBAT_SYNCOUT pin drops below the specific threshold, it indicates a "hot" temperature condition. In response, the device will stop charging and reset CHG_EN to 0. The startup sequence cannot be initiated again until the battery or cable connector temperature fall down, which resulting a voltage rising on TSBAT_SYNCOUT or TSBUS pin. The TSBUS_FLT and TSBAT_FLT thresholds can be set by I²C serial interface.

Take TSBAT_SYNCOUT pin as an example, the external bias resistors network is shown as Figure 15. The selection of R_{T1} and R_{T2} resistors depends on the NTC utilized. For a 10k Ω NTC, R_{T1} and R_{T2} should be 10k Ω resistors. If a 100k Ω NTC is selected, choose 100k Ω resistors as R_{T1} and R_{T2} .

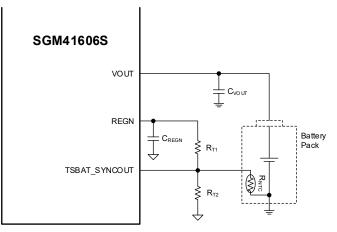


Figure 15. TSBAT_SYNCOUT Thermistor and Bias Network

DETAILED DESCRIPTION (continued)

The voltage percentage of the TSBUS and TSBAT_SYNCOUT pin ($V_{TS}/V_{REGN} \times 100\%$) may vary from 0% to 50%, and the voltage on the TSBUS and TSBAT_SYNCOUT pin is determined by the following equation:

$$V_{\text{TSBUS}} \text{ or } V_{\text{TSBAT}} (V) = \frac{\frac{1}{(\frac{1}{R_{\text{NTC}}} + \frac{1}{R_{\text{T1}}})}}{\frac{1}{R_{\text{T2}} + (\frac{1}{R_{\text{NTC}}} + \frac{1}{R_{\text{T1}}})} \times V_{\text{REGN}}}$$
(8)

The voltage percentage of the TSBUS and TSBAT_SYNCOUT pin is determined by the following equation.

TSBUS or TSBAT (%) =
$$\frac{\frac{1}{(\frac{1}{R_{NTC}} + \frac{1}{R_{T1}})}}{\frac{1}{R_{T2} + (\frac{1}{R_{NTC}} + \frac{1}{R_{T1}})}}$$
(9)

In addition, a TSBUS_TSBAT_ALM warning interrupt will be sent to notify the AP if the voltage percentage of TSBUS or TSBAT falls with 5% of the TSBUS or TSBAT setting.

REGISTER MAPS

All registers are 8-bit and individual bits are named from D[0] (LSB) to D[7] (MSB).

I²C Register Address Map

FUNCTION	STAT	FLAG	MASK	THRESHOLD SETTING	ENABLE	DEGLITCH
MS				0x12[1:0]		
DEVICE_REV				0x22[7:4]		
DEVICE_ID				0x22[3:0]		
REG_RST					0x0F[7]	
EN_HIZ					0x0F[6]	
EN_OTG					0x0F[5]	
CHG_EN	0x17[6]	0x1C[6]	0x21[6]		0x0F[4]	
EN_BYPASS					0x0F[3]	
VBUS_ERRLO	0x17[4]	0x1C[4]	0x21[5]		0x05[3]	
VBUS_ERRHI	0x17[5]	0x1C[5]	0x21[4]		0x05[2]	
ACRB1_CONFIG	0x15[1]	0x1A[1]	0x1F[1]		0x0F[2]	
ACRB2_CONFIG	0x15[0]	0x1A[0]	0x1F[0]		0x0F[2]	
ACDRV1_STAT	0x0F[1]					
ACDRV2_STAT	0x0F[0]					
WD_TIMEOUT	0x16[0]	0x1B[0]	0x20[0]	0x10[4:3]	0x10[2]	
FSW_SET				0x10[7:5]		
FREQ_SHIFT				0x12[4:3]		
RSNS				0x11[7]		
SS_TIMEOUT	0x16[6]	0x1B[6]	0x20[6]	0x11[6:4]		
ADC	0x16[7]	0x1B[7]	0x20[7]		0x23[7]	
AC1_PD_EN					0x0E[1]	
AC2_PD_EN					0x0E[0]	
BUS_PD_EN					0x06[7]	
AC10VP	0x15[7]	0x1A[7]	0x1F[7]	0x0E[7:5]		
AC2OVP	0x15[6]	0x1A[6]	0x1F[6]	0x0E[4:2]		
BUSOVP_ALM	0x13[0]	0x18[0]	0x1D[0]	0x07[6:0]	0x07[7]	
BUSOVP	0x13[1]	0x18[1]	0x1D[1]	0x06[6:0]		
BUSUCP	0x14[5]	0x19[5]	0x1E[5]	0x05[6]	0x05[7]	0x11[3:2]
BUSOCP_ALM	0x14[6]	0x19[6]	0x1E[6]	0x09[4:0]	0x09[7]	
BUSOCP	0x14[7]	0x19[7]	0x1E[7]	0x08[4:0]		
TSBUS_FLT	0x16[4]	0x1B[4]	0x20[4]	0x0C[7:0]	0x0A[3]	
OUTOVP	0x13[5]	0x18[5]	0x1D[5]	0x12[6:5]	0x12[7]	
BATOVP_ALM	0x13[6]	0x18[6]	0x1D[6]	0x01[6:0]	0x01[7]	
BATOVP	0x13[7]	0x18[7]	0x1D[7]	0x00[6:0]	0x00[7]	
BATUCP_ALM	0x13[2]	0x18[2]	0x1D[2]	0x04[6:0]	0x04[7]	
CONV_OCP	0x17[1]&0x17[0]	0x1C[1]&0x1C[0]	0x21[1]&0x21[0]		0x10[0]	0x10[1]

REGISTER MAPS (continued)

I²C Register Address Map (continued)

FUNCTION	STAT	FLAG	MASK	THRESHOLD SETTING	ENABLE	DEGLITCH
PMID2OUT_OVP	0x17[3]	0x1C[2]	0x21[3]		OPT	
PMID2OUT_UVP	0x17[2]	0x1C[3]	0x21[2]	-	OPT	
BUSSCP	0x14[3]	0x19[3]	0x1E[3]	-		
BATOCP_ALM	0x13[3]	0x18[3]	0x1D[3]	0x03[6:0]	0x03[7]	
BATOCP	0x13[4]	0x18[4]	0x1D[4]	0x02[6:0]	0x02[7]	
CFLY_SHORT	0x14[2]	0x19[2]	0x1E[2]	-	OPT	
TSBUS_TSBAT_ALM	0x16[5]	0x1B[5]	0x20[5]			
TSBAT_FLT	0x16[3]	0x1B[3]	0x20[3]	0x0D[7:0]	0x0A[2]	
TDIEOTP_ALM	0x16[1]	0x1B[1]	0x20[1]	0x0B[7:0]	0x0A[4]	
TDIE_OTP	0x16[2]	0x1B[2]	0x20[2]	0x0A[6:5]	0x0A[7]	
VOUTPRESENT	0x15[5]	0x1A[5]	0x1F[5]			
VAC1PRESENT	0x15[4]	0x1A[4]	0x1F[4]	-		
VAC2PRESENT	0x15[3]	0x1A[3]	0x1F[3]			
VBUSPRESENT	0x15[2]	0x1A[2]	0x1F[2]			
REGN_GOOD	0x17[7]	0x1C[7]	0x21[7]			

REGISTER MAPS (continued)

Bit Types:

R: Read only

R/W: Read/Write

RC: Read clears the bit

R/WC: Read/Write. Writing a '1' clears the bit. Writing a '0' has no effect.

REG0x00: BATOVP Register [reset = 0x5A]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	BATOVP_DIS	0	R/W	Disable BATOVP 0 = Enable (Default) 1 = Disable	REG_RST
D[6:0]	BATOVP[6:0]	1011010	R/W	VBAT OVP Protection Rising Threshold Setting Bits V _{BAT_OVP_R} =3.5V+ BATOVP[6:0] × 0.01V Default: 4.4V (1011010) Range: 3.5V (0000000) – 4.77V (1111111) Offset: 3.5V	REG_RST

REG0x01: BATOVP_ALM Register [reset = 0x46]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	BATOVP_ALM_DIS	0	R/W	VBAT OVP Alarm Disable Bit 0 = Enabled (Default) 1 = Disabled	REG_RST
D[6:0]	BATOVP_ALM[6:0]	1000110	R/W	VBAT OVP Alarm Rising Threshold Setting Bits V _{BATOVP_ALM_R} = 3.5V + BATOVP_ALM[6:0] × 0.01V Default: 4.2V (1000110) Range: 3.5V (0000000) – 4.77V (1111111) Offset: 3.5V	REG_RST

REG0x02: BATOCP Register [reset = 0x47]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	BATOCP_DIS	0	R/W	IBAT OCP Protection Disable Bit 0 = Enabled (Default) 1 = Disabled	REG_RST
D[6:0]	BATOCP[6:0]	1000111	R/W	$\begin{split} & \text{IBAT OCP Protection Threshold Setting Bits} \\ & \text{I}_{\text{BAT_OCP}} = \text{BATOCP[6:0]} \times 0.1\text{A}, \text{ when BATOCP[6:0]} \leq 1010101\text{b}; \\ & \text{I}_{\text{BAT_OCP}} = 8.5\text{A} + (\text{BATOCP[6:0]} - 1010101\text{b}) \times 0.3\text{A}, \text{ when} \\ & \text{BATOCP[6:0]} > 1010101\text{b} \\ & \text{Default: 7.1A (1000111)} \\ & \text{Range: 2A (0010100)} - 11.2\text{A (1011110)} \\ & \text{Offset: 0A} \\ & \text{When BATOCP[6:0]} \leq 0010100, \text{ I}_{\text{BATOCP}} = 2\text{A}. \\ & \text{When BATOCP[6:0]} \geq 1011110, \text{ I}_{\text{BATOCP}} = 11.2\text{A}. \end{split}$	REG_RST

REGISTER MAPS (continued)

REG0x03: BATOCP_ALM Register [reset = 0x46]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	BATOCP_ALM_DIS	0	R/W	IBAT OCP Alarm Disable Bit 0 = Enabled (Default) 1 = Disabled	REG_RST
D[6:0]	BATOCP_ALM[6:0]	1000110	R/W	IBAT OCP Alarm Rising Threshold Setting Bits $I_{BATOCP_ALM_R} = BATOCP_ALM[6:0] \times 0.1A$ Default: 7A (1000110) Range: 0A (0000000) – 12.7A (1111111) Offset: 0A The IBAT OCP alarm rising threshold should be set lower than I_{BUS_OCP} to ensure proper operation.	REG_RST

REG0x04: BATUCP_ALM Register [reset = 0x28]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	BATUCP_ALM_DIS	0	R/W	IBAT UCP Alarm Disable Bit 0 = Enable (default) 1 = Disable	REG_RST
D[6:0]	BATUCP_ALM[6:0]	0101000	R/W	Set this bit to '1' before CHG_EN is set to '1'. Battery Under-Current Alarm Setting Bits $I_{BATUCP_ALM_F} = BATUCP_ALM[6:0] \times 0.05A$ Default: 2A (0101000) Range: 0A (0000000) – 4.5A (1011010) Offset: 0A When BATUCP_ALM[6:0] ≥ 1011010, $I_{BATUCP_ALM_F} = 4.5A$. When battery current falls below the programmed threshold, an nINT is sent. The host controller should monitor the battery current to determine when to disable the device and hand over charging to the main charger.	

REG0x05: CHARGER_CONTROL 1 Register [reset = 0x22]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	BUSUCP_DIS	0	R/W	IBUS UCP Protection Disable Bit 0 = Enabled (default) 1 = Disabled	REG_RST
D[6]	BUSUCP	0	R/W	BUSUCP Setting Bit $0 = I_{BUS_UCP_R} = 500$ mA, $I_{BUS_UCP_F} = 250$ mA (default) $1 = I_{BUS_UCP_R} = 250$ mA, $I_{BUS_UCP_F} = 125$ mA	REG_RST
D[5:4]	Reserved	10	R	Reserved	N/A
D[3]	VBUS_ERRLO_DIS	0	R/W	VBUS_ERRLO Disable Bit 0 = Enable, converter does not switching, but Q_B is turned on when device is in VBUS_ERRLO (default) 1 = Disable, both converter and Q_B are turned on when device is in VBUS_ERRLO	REG_RST
D[2]	VBUS_ERRHI_DIS	0	R/W	VBUS_ERRHI Disable Bit $0 = \text{Enable}$, converter does not switching, but Q_B is turned on when device is in VBUS_ERRHI (default) $1 = \text{Disable}$, both converter and Q_B are turned on when device is in VBUS_ERRHI	REG_RST
D[1:0]	Reserved	10	R	Reserved	N/A

REGISTER MAPS (continued)

REG0x06: BUSOVP Register [reset = 0x26]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	VBUS_PDN_EN	0	R/W	VBUS Pull-Down Resistor Enable Bit 0 = Pull-down disabled (default) 1 = Pull-down enabled. When enabled, the VBUS is pulled down by $6k\Omega R_{PDN_{VBUS}}$. This bit will not be automatically reset. The host should write this bit to 0 if there is no need to pull down VBUS.	
D[6:0]	VBUS_OVP[6:0]	0100110	R/W	$\label{eq:VBUS_OVP_R} \begin{array}{l} \mbox{VBUS_OVP_R} = 7V + VBUS_OVP[6:0] \times 0.05V \\ \mbox{Default: } 8.9V \ (0100110) \\ \mbox{Range: } 7V \ (0000000) - 12.75V \ (1110011) \\ \mbox{Offset: } 7V \\ \mbox{If VBUS_OVP[6:0]} \geq 1110011, \ V_{BUS_OVP_R} = 12.75V \\ \mbox{Bypass Mode:} \\ \mbox{V}_{BUS_OVP_R} = 3.5V + VBUS_OVP[6:0] \times 0.025V \\ \mbox{Default: } 4.45V \ (0100110) \\ \mbox{Range: } 3.5V \ (0000000) - 6.5V \ (1111000) \\ \mbox{Offset: } 3.5V \\ \mbox{If VBUS_OVP[6:0]} \geq 1111000, \ V_{BUS_OVP_R} = 6.5V \\ \end{array}$	REG_RST

REG0x07: BUSOVP_ALM Register [reset = 0x22]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	BUSOVP_ALM_DIS	0	R/W	VBUS OVP Alarm Disable Bit 0 = Enabled (Default) 1 = Disabled	REG_RST
D[6:0]	VBUSOVP_ALM[6:0]	0100010	R/W	VBUS OVP Alarm Rising Threshold Setting Bits Voltage Divider Mode: $V_{BUSOVP_ALM_R} = 7V + VBUSOVP_ALM[6:0] \times 0.05V$ Default: 8.7V (0100010) Range: 7V (0000000) – 13.35V (1111111) Offset: 7V Bypass Mode: $V_{BUSOVP_ALM_R} = 3.5V + VBUSOVP_ALM[6:0] \times 0.025V$ Default: 4.35V (0100010) Range: 3.5V (0000000) – 6.675V (1111111) Offset: 3.5V The VBUS OVP alarm rising threshold should be set lower than $V_{BUS OVP R}$ to ensure proper operation.	REG_RST

REG0x08: BUSOCP Register [reset = 0x0D]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:5]	Reserved	000	R	Reserved	N/A
D[4:0]	BUSOCP[4:0]	01101	R/W	IBUS OCP Protection Threshold Setting Bits $I_{BUS_{OCP}} = 1A + BUSOCP[4:0] \times 0.25A$ Default: 4.25A (01101) Range: 1A (00000) - 6.5A (10110) Offset: 1A When BUSOCP[4:0] \geq 10110, $I_{BUS OCP} = 6.5A$.	REG_RST

REGISTER MAPS (continued)

REG0x09: BUSOCP_ALM Register [reset = 0x0A]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	BUSOCP_ALM_DIS	0	R/W	BUSOCP_ALM Disable Bit 0 = Enable (default) 1 = Disable	REG_RST
D[6:5]	Reserved	00	R	Reserved	N/A
D[4:0]	BUSOCP_ALM[4:0]	01010	R/W	Bus Over-Voltage Alarm Setting Bits $I_{BUSOCP_ALM_R} = 1A + BUSOCP_ALM[4:0] \times 0.25A$ Default: 3.5A (01010) Range: 1A (00000) - 8.75A (11111) Offset: 1A The $I_{BUSOCP_ALM_R}$ should be set lower than I_{BUS_OCP} to ensure proper operation.	REG_RST

REG0x0A: TEMP_CONTROL Register [reset = 0x60]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	TDIE_OTP_DIS	0	R/W	TDIE OTP Protection Disable Bit 0 = Enabled (default) 1 = Disabled	REG_RST
D[6:5]	TDIE_OTP[1:0]	11	R/W	TDIE OTP Protection Rising Threshold Setting Bits $T_{DIE_OTP_R} = 80^{\circ}C + TDIE_OTP[1:0] \times 20^{\circ}C$ $00 = +80^{\circ}C$ $01 = +100^{\circ}C$ $10 = +120^{\circ}C$ $11 = +140^{\circ}C$ (default)	REG_RST
D[4]	TDIEOTP_ALM_DIS	0	R/W	TDIE OTP Alarm Disable Bit 0 = Enabled (default) 1 = Disabled	REG_RST
D[3]	TSBUS_FLT_DIS	0	R/W	TSBUS_FLT Protection Disable Bit 0 = Enabled (default) 1 = Disabled	REG_RST
D[2]	TSBAT_FLT_DIS	0	R/W	TSBAT_FLT Protection Disable Bit 0 = Enabled (default) 1 = Disabled	REG_RST
D[1:0]	Reserved	00	R	Reserved	N/A

REG0x0B: TDIEOTP_ALM Register [reset = 0xC8]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:0]	TDIEOTP_ALM[7:0]	11001000	R/W	TDIE OTP Alarm Rising Threshold Setting Bits $T_{DIEOTP_ALM_R} = 25^{\circ}C + TDIEOTP_ALM[7:0] \times 0.5^{\circ}C$ Default: 125^{\circ}C (11001000) Range: 25^{\circ}C (00000000) - 150^{\circ}C (11111010) Offset: 25^{\circ}C When TDIEOTP_ALM[7:0] ≥ 11111010, $T_{DIEOTP_ALM_R} = 150^{\circ}C$. The TDIE OTP alarm rising threshold should be set lower than $T_{DIE_OTP_R}$ to ensure proper operation.	REG_RST

REGISTER MAPS (continued)

REG0x0C: TSBUS_FLT Register [reset = 0x15]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
				TSBUS Percentage Fault Threshold Setting Bits	
D[7:0]	TSBUS_FLT[7:0]	00010101	R/W	TS _{BUS_FLT_F} = TSBUS_FLT[7:0] × 0.19531% Default: 4.10151% (00010101) Range: 0% (00000000) – 49.8041% (11111111) Offset: 0%	REG_RST

REG0x0D: TSBAT_FLT Register [reset = 0x15]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:0]	TSBAT_FLT[7:0]	00010101	R/W	TSBAT Percentage Fault Threshold Setting Bits TS _{BAT_FLT_F} = TSBAT_FLT[7:0] × 0.19531% Default: 4.10151% (00010101) Range: 0% (00000000) – 49.8041% (11111111) Offset: 0%	REG_RST

REG0x0E: VAC_CONTROL Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:5]	VAC1OVP[2:0]	000	R/W	VAC1 OVP Protection Rising Threshold Setting Bits 000 = 6.5V (default) 001 = 10.5V 010 = 12V 011 = 14V 100 = 16V 101 = 18V	REG_RST
D[4:2]	VAC2OVP[2:0]	000	R/W	VAC2 OVP Protection Rising Threshold Setting Bits 000 = 6.5V (default) 001 = 10.5V 010 = 12V 011 = 14V 100 = 16V 101 = 18V	REG_RST
D[1]	VAC1_PDN_EN	0	R/WC	VAC1 Pull-Down Resistor Enable Bit 0 = Pull-down disabled (default) 1 = Pull-down enabled. When enabled, the VAC1 is pulled down by $350\Omega R_{PDN_VAC}$. Note that to prevent chip damage, the pull-down current is limited to $35mA$. This bit will not be automatically reset. The host should write this bit to 0 if there is no need to pull down VAC1.	REG_RST
D[0]	VAC2_PDN_EN	0	R/WC	VAC2 Pull-Down Resistor Enable Bit 0 = Pull-down disabled (default) $1 = Pull-down enabled. When enabled, the VAC2 is pulled down by 350\Omega R_{PDN_VAC}. Note that to prevent chip damage, the pull-down currentis limited to 35mA.This bit will not be automatically reset. The host should write this bit to 0if there is no need to pull down VAC2.$	REG_RST

REG0x0F: CHARGER_CONTROL 2 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	REG_RST	0	R/WC	Register Reset Bit 0 = No register reset (default) 1 = Reset registers to their default values. When enabled, the associated register bits are reset to their default values and then this bit is automatically reset to 0.	REG_RST
D[6]	EN_HIZ	0	R/W	HIZ Mode Enable Bit 0 = Disable HIZ mode (default) 1 = Enable HIZ mode When device is in HIZ mode, converter stops switching, ADC stops converting, ACDRV is turned off and the REGN LDO is forced off.	REG_RST
D[5]	EN_OTG	0	R/W	Power Path Control Enable Bit During OTG Mode 0 = Don't allow the AP to control ACDRV in OTG mode (default) 1 = Allow the AP to control ACDRV in OTG mode	REG_RST or Watchdog
D[4]	CHG_EN	0	R/W	Charge Enable Bit 0 = Disabled (default) 1 = Enabled. If any fault has occurred, device returns to standby mode and this bit is automatically cleared to 0.	REG_RST or Watchdog
D[3]	EN_BYPASS	0	R/W	Bypass Mode Enable Bit 0 = Disable bypass mode (default) 1 = Enable bypass mode	REG_RST or Watchdog
D[2]	DIS_ACDRV_BOTH	0	R/W	Disable Bit for Both ACDRV When this bit is set, the device forces both ACDRV off. 0 = ACDRV1 and ACDRV2 are allowed to be turned on (default) 1 = ACDRV1 and ACDRV2 are forced off	N/A
D[1]	ACDRV1_STAT	0	R/W	Status and Control Bit of ACDRV1 Driver For dual input configurations with two sets of OVPFETs, this bit can be used for input swapping. 0 = ACDRV1 is turned OFF (default) 1 = ACDRV1 is turned ON	N/A
D[0]	ACDRV2_STAT	0	R/W	Status and Control Bit of ACDRV2 Driver For dual input configurations with two sets of OVPFETs, this bit can be used for input swapping. 0 = ACDRV2 is turned OFF (default) 1 = ACDRV2 is turned ON	N/A

REG0x10: CHARGER_CONTROL 3 Register [reset = 0x80]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:5]	FSW_SET[2:0]	100	R/W	Switched-Cap Converter Switching Frequency Setting Bits 000 = 187.5kHz 001 = 250kHz 010 = 300kHz 011 = 375kHz 100 = 500kHz (default) 101 = 750kHz 110 = 1000kHz 111 = 1500kHz	N/A
D[4:3]	WDT_TIMER[1:0]	00	R/W	Watchdog Timer Setting Bits 00 = 0.5s (default) 01 = 1s 10 = 8s 11 = 30s	REG_RST
D[2]	WDT_DIS	0	R/W	Watchdog Timer Disable Bit 0 = Enable (default) 1 = Disable	REG_RST
D[1]	CONV_OCP_TIME_SEL	0	R/W	CONV_OCP Trigger Times Select Bit 0 = CONV_OCP trigger 1 time (default) 1 = CONV_OCP trigger 4 times	REG_RST
D[0]	CONV_OCP_DIS	0	R/W	CONV_OCP Protection Disable bit 0 = Enable (default) 1 = Disable	REG_RST

REGISTER MAPS (continued)

REG0x11: CHARGER_CONTROL 4 Register [reset = 0x71]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	IBAT_RSNS	0	R/W	External IBAT Current Sense Resistor Setting Bit $0 = 2m\Omega$ (default) $1 = 5m\Omega$	REG_RST
D[6:4]	SS_TIMEOUT[2:0]	111	R/W	Soft-Start Timeout Setting Bits After soft-start timeout, the device checks if I_{BUS} is above IBUS UCP threshold. 000 = 6.25ms 001 = 12.5ms 010 = 25ms 011 = 50ms 100 = 100ms 101 = 400ms 110 = 1.5s 111 = 12s (default)	N/A
D[3:2]	IBUSUCP_FALL_ DEG[1:0]	00	R/W	IBUS UCP Protection Deglitch Time Setting Bits 00 = 0.01ms (default) 01 = 5ms 10 = 50ms 11 = 150ms	REG_RST
D[1:0]	Reserved	01	R/W	Reserved	N/A

REG0x12: CHARGER_CONTROL 5 Register [reset = 0x60]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	VOUT_OVP_DIS	0	R/W	VOUT OVP Protection Disable Bit 0 = Enable (default) 1 = Disable	REG_RST
D[6:5]	VOUT_OVP[1:0]	11	R/W	VOUT OVP Protection Rising Threshold Setting Bits $V_{OUT_OVP_R} = 4.7V + VOUT_OVP[1:0] \times 0.1V$ 00 = 4.7V 01 = 4.8V 10 = 4.9V 11 = 5.0V (default)	REG_RST
D[4:3]	FREQ_SHIFT[1:0]	00	R/W	Bits of Adjusting Switching Frequency 00 = Nominal switching frequency set in REG0x10[7:5] 01 = Set switching frequency 10% higher than normal 10 = Set switching frequency 10% lower than normal	REG_RST
D[2]	Reserved	0	R/W	Reserved	N/A
D[1:0]	MS[1:0]	00	R	Primary, Secondary, Standalone Operation 00 = Standalone (default) 01 = Secondary 10 = Primary	N/A

REG0x13: STAT 1 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	BATOVP_STAT	0	R	VBAT OVP Fault Status Bit 0 = Not in BATOVP (default) 1 = In BATOVP	N/A
D[6]	BATOVP_ALM_STAT	0	R	BATOVP_ALM Status Bit 0 = Not in BATOVP_ALM (default) 1 = In BATOVP_ALM	N/A
D[5]	VOUTOVP_STAT	0	R	VOUTOVP Status Bit 0 = Not in VOUTOVP (default) 1 = in VOUTOVP	N/A
D[4]	BATOCP_STAT	0	R	BATOCP Status Bit 0 = Not in BATOCP (default) 1 = In BATOCP	N/A
D[3]	BATOCP_ALM_STAT	0	R	BATOCP_ALM Status Bit 0 = Not in BATOCP_ALM (default) 1 = In BATOCP_ALM	N/A
D[2]	BATUCP_ALM_STAT	0	R	BATUCP_ALM Status Bit 0 = Not in BATUCP_ALM (default) 1 = In BATUCP_ALM	N/A
D[1]	BUSOVP_STAT	0	R	VBUSOVP Status Bit 0 = Not in VBUS OVP (default) 1 = In VBUS OVP	N/A
D[0]	BUSOVP_ALM_STAT	0	R	BUSOVP_ALM Status Bit 0 = Not in BUSOVP_ALM (default) 1 = In BUSOVP_ALM	N/A

REG0x14: STAT 2 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	BUSOCP_STAT	0	R	BUSOCP Status Bit 0 = Not in BUSOCP (default) 1 = In BUSOCP	N/A
D[6]	BUSOCP_ALM_STAT	0	R	BUSOCP_ALM Status Bit 0 = Not in BUSOCP_ALM (default) 1 = In BUSOCP_ALM	N/A
D[5]	BUSUCP_STAT	0	R	BUSUCP Status Bit 0 = Not in BUSUCP (default) 1 = In BUSUCP	N/A
D[4]	Reserved	0	R	Reserved	N/A
D[3]	BUSSCP_STAT	0	R	BUSSCP Status Bit 0 = Not in BUSSCP (default) 1 = In BUSSCP	N/A
D[2]	CFLY_SHORT_STAT	0	R	CFLY Short Detection Status Bit 0 = CFLY not shorted (default) 1 = CFLY shorted	N/A
D[1:0]	Reserved	00	R	Reserved	N/A

REG0x15: STAT 3 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	VAC10VP_STAT	0	R	VAC1 OVP Status Bit 0 = Not in VAC1 OVP (default) 1 = In VAC1 OVP	N/A
D[6]	VAC2OVP_STAT	0	R	VAC2 OVP Status Bit 0 = Not in VAC2 OVP (default) 1 = In VAC2 VP	N/A
D[5]	VOUTPRESENT_STAT	0	R	VOUT Present Status Bit 0 = VOUT not present (default) 1 = VOUT present	N/A
D[4]	VAC1PRESENT_STAT	0	R	VAC1 Present Status Bit 0 = VAC1 not present (default) 1 = VAC1 present	N/A
D[3]	VAC2PRESENT_STAT	0	R	VAC2 Present Status Bit 0 = VAC2 not present (default) 1 = VAC2 present	N/A
D[2]	VBUSPRESENT_STAT	0	R	VBUS Present Status Bit 0 = VBUS not present (default) 1 = VBUS present	N/A
D[1]	ACRB1_CONFIG_STAT	0	R	ACFET1-RBFET1 Status Bit 0 = ACFET1-RBFET1 is not placed (default) 1 = ACFET1-RBFET1 is placed	N/A
D[0]	ACRB2_CONFIG_STAT	0	R	ACFET2-RBFET1 Status Bit 0 = ACFET2-RBFET2 is not placed (default) 1 = ACFET2-RBFET2 is placed	N/A

REG0x16: STAT 4 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	ADC_DONE_STAT	0	R	ADC Conversion Status Bit (in 1-Shot Mode Only) 0 = Conversion not completed (default) 1 = Conversion completed Note: Always reads 0 in continuous mode	N/A
D[6]	SS_TIMEOUT_STAT	0	R	Soft-Start Timeout Status Bit 0 = Device not in soft timeout (default) 1 = Device in soft timeout	N/A
D[5]	TSBUS_TSBAT_ ALM_STAT	0	R	TSBUS and TSBAT Alarm Status Bit 0 = TSBUS or TSBAT threshold is not within 5% of the TSBUS_FLT or TSBAT_FLT set threshold (default) 1 = TSBUS or TSBAT threshold is within 5% of the TSBUS_FLT or TSBAT_FLT set threshold	N/A
D[4]	TSBUS_FLT_STAT	0	R	TSBUS_FLT Status Bit 0 = Not in TSBUS_FLT (default) 1 = In TSBUS_FLT	N/A
D[3]	TSBAT_FLT_STAT	0	R	TSBAT_FLT Status Bit 0 = Not in TSBAT_FLT (default) 1 = In TSBAT_FLT	N/A
D[2]	TDIE_OTP_STAT	0	R	TDIE Over-Temperature Fault Status Bit 0 = Not in TDIE fault (default) 1 = In TDIE fault	N/A
D[1]	TDIEOTP_ALM_STAT	0	R	TDIE Over-Temperature Alarm Status Bit 0 = Not in TDIEOTP_ALM (default) 1 = In TDIEOTP_ALM	N/A
D[0]	WDT_STAT	0	R	Watchdog Timer Status Bit 0 = Normal (default) 1 = Watchdog timer expired	N/A

REG0x17: STAT 5 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	REGN_GOOD_STAT	0	R	REGN_GOOD Status Bit 0 = REGN not good (default) 1 = REGN good	N/A
D[6]	CONV_ACTIVE_STAT	0	R	Converter active Status Bit 0 = Converter not running (default) 1 = Converter running	N/A
D[5]	VBUS_ERRHI_STAT	0	R	VBUS_ERRHI Status Bit 0 = Not in VBUS_ERRHI status (default) 1 = In VBUS_ERRHI status	N/A
D[4]	VBUS_ERRLO_STAT	0	R	VBUS_ERRLO Status Bit 0 = Not in VBUS_ERRLO status (default) 1 = In VBUS_ERRLO status	N/A
D[3]	PMID2VOUT_OVP_ STAT	0	R	PMID2VOUT_OVP_STAT Bit 0 = Not in PMID2VOUT_OVP_STAT (default) 1 = PMID2VOUT_OVP_STAT	N/A
D[2]	PMID2VOUT_UVP_ STAT	0	R	PMID2VOUT_UVP_STAT Bit 0 = Not in PMID2VOUT_UVP_STAT (default) 1 = In PMID2VOUT_UVP_STAT	N/A
D[1]	CONV_OCP_STAT	0	R	CONV_OCP_STAT Bit 0 = Not in CONV_OCP_STAT (default) 1 = In CONV_OCP_STAT	N/A
D[0]	CFL_RVS_OCP_STAT	0	R	CFL_RVS_OCP_STAT Bit 0 = Not in CFL_RVS_OCP_STAT (default) 1 = In CFL_RVS_OCP_STAT	N/A

REG0x18: FLAG 1 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	BATOVP_FLAG	0	RC	VBAT OVP Fault Flag Bit 0 = No VBAT OVP fault (default) 1 = VBAT OVP fault has occurred. It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	N/A
D[6]	BATOVP_ALM_FLAG	0	RC	VBAT OVP Alarm Flag Bit 0 = No VBAT OVP alarm (default) 1 = VBAT OVP alarm has occurred. It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	N/A
D[5]	VOUTOVP_FLAG	0	RC	VOUT OVP Fault Flag Bit 0 = No VOUT OVP fault (default) 1 = VOUT OVP fault has occurred. It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	N/A
D[4]	BATOCP_FLAG	0	RC	IBAT OCP Fault Flag Bit 0 = No IBAT OCP fault (default) 1 = IBAT OCP fault has occurred. It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	N/A
D[3]	BATOCP_ALM_FLAG	0	RC	IBAT OCP Alarm Flag Bit 0 = No IBAT OCP alarm (default) 1 = IBAT OCP alarm has occurred. It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	N/A
D[2]	BATUCP_ALM_FLAG	0	RC	IBAT UCP Alarm Flag Bit 0 = No IBAT UCP alarm (default) 1 = IBAT UCP alarm has occurred. It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	N/A
D[1]	BUSOVP_FLAG	0	RC	VBUS OVP Fault Flag Bit 0 = No VBUS OVP fault (default) 1 = VBUS OVP fault has occurred. It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	N/A
D[0]	BUSOVP_ALM_FLAG	0	RC	VBUS OVP Alarm Flag Bit 0 = No VBUS OVP alarm (default) 1 = VBUS OVP alarm has occurred. It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	N/A

REG0x19: FLAG 2 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	BUSOCP_FLAG	0	RC	IBUS OCP Fault Flag Bit 0 = No IBUS OCP fault (default) 1 = IBUS OCP fault has occurred. It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	N/A
D[6]	BUSOCP_ALM_FLAG	0	RC	BUSOCP_ALM Fault Flag Bit 0 = No IBUS OCP ALM fault (default) 1 = IBUS OCP ALM fault has occurred. It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	N/A
D[5]	BUSUCP_FLAG	0	RC	IBUS UCP Fault Flag Bit 0 = No IBUS UCP fault (default) 1 = IBUS UCP fault has occurred. It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	N/A
D[4]	Reserved	0	R	Reserved	N/A
D[3]	BUSSCP_FLAG	0	RC	VBUS SCP Fault Flag Bit 0 = No VBUS SCP fault (default) 1 = VBUS SCP fault has occurred. It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	N/A
D[2]	CFLY_SHORT_FLAG	0	RC	CFLY Short Detection Fault Flag Bit 0 = No CFLY short fault (default) 1 = CFLY short fault has occurred. It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	N/A
D[1:0]	Reserved	00	R	Reserved	N/A

REG0x1A: FLAG 3 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	VAC10VP_FLAG	0	RC	VAC1 OVP Fault Flag Bit 0 = No VAC1 OVP fault (default) 1 = VAC1 OVP fault has occurred. It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	N/A
D[6]	VAC2OVP_FLAG	0	RC	VAC2 OVP Fault Flag Bit 0 = No VAC2 OVP fault (default) 1 = VAC2 OVP fault has occurred. It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	N/A
D[5]	VOUTPRESENT_FLAG	0	RC	VOUT Present Flag Bit 0 = No VOUT present event (default) 1 = VOUT present event has occurred. It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	N/A
D[4]	VAC1PRESENT_FLAG	0	RC	VAC1 Present Flag Bit 0 = No VAC1 present event (default) 1 = VAC1 present event has occurred. It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	N/A
D[3]	VAC2PRESENT_FLAG	0	RC	VAC2 Present Flag Bit 0 = No VAC2 present event (default) 1 = VAC2 present event has occurred. It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	N/A
D[2]	VBUSPRESENT_FLAG	0	RC	VBUS Present Flag Bit 0 = No VBUS present event (default) 1 = VBUS present event has occurred. It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	N/A
D[1]	ACRB1_CONFIG_FLAG	0	RC	ACFET1-RBFET1 Configuration Detection Flag Bit 0 = Normal (default) 1 = ACFET1-RBFET1 configuration status changed. It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	N/A
D[0]	ACRB2_CONFIG_FLAG	0	RC	ACFET2-RBFET2 Configuration Detection Flag Bit 0 = Normal (default) 1 = ACFET2-RBFET2 configuration status changed. It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0.	N/A

REG0x1B: FLAG 4 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	ADC_DONE_FLAG	0	RC	ADC Conversion Complete Event Flag Bit In 1-shot conversion mode, this bit is set to 1 after ADC conversion of all enabled channels is completed. 0 = Normal (default) 1 = ADC conversion has completed.	N/A
D[6]	SS_TIMEOUT_FLAG	0	RC	Soft-Start Timeout Flag Bit 0 = No soft-start timeout event (default) 1 = Soft-start timeout event has occurred.	N/A
D[5]	TSBUS_TSBAT_ ALM_FLAG	0	RC	TSBUS_TSBAT Alarm Flag Bit 0 = No TSBUS_TSBAT alarm (default) 1 = TSBUS_TSBAT alarm has occurred.	N/A
D[4]	TSBUS_FLT_FLAG	0	RC	TSBUS_FLT Flag Bit 0 = No TSBUS Fault (default) 1 = TSBUS fault has occurred.	N/A
D[3]	TSBAT_FLT_FLAG	0	RC	TSBAT_FLT Flag Bit 0 = No TSBAT Fault (default) 1 = TSBAT fault has occurred.	N/A
D[2]	TDIE_OTP_FLAG	0	RC	TDIE Over-Temperature Fault Flag Bit 0 = No TDIE over-temperature fault (default) 1 = TDIE over-temperature fault has occurred.	N/A
D[1]	TDIEOTP_ALM_FLAG	0	RC	TDIE Over-Temperature Alarm Flag Bit 0 = No TDIE over-temperature alarm (default) 1 = TDIE over-temperature alarm has occurred.	N/A
D[0]	WDT_FLAG	0	RC	Watchdog Timeout Fault Flag Bit 0 = No watchdog timeout fault (default) 1 = Watchdog timeout fault has occurred.	N/A

REG0x1C: FLAG 5 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	REGN_GOOD_FLAG	0	RC	REGN_GOOD Event Flag Bit 0 = No REGN_GOOD event (default) 1 = REGN_GOOD event has occurred.	N/A
D[6]	CONV_ACTIVE_FLAG	0	RC	Converter Active Event Flag Bit 0 = No converter active event (default) 1 = Converter active event has occurred.	N/A
D[5]	VBUS_ERRHI_FLAG	0	RC	VBUS High Voltage Fault Flag Bit 0 = No VBUS high voltage fault (default) 1 = Device in VBUS high voltage fault has occurred.	N/A
D[4]	VBUS_ERRLO_FLAG	0	RC	VBUS Low Voltage Fault Flag Bit 0 = No VBUS low voltage fault (default) 1 = Device in VBUS low voltage fault has occurred.	N/A
D[3]	PMID2VOUT_UVP_ FLAG	0	RC	PMID2VOUT_UVP_FLAG Bit 0 = Normal (default) 1 = PMID2VOUT_UVP status changed	N/A
D[2]	PMID2VOUT_OVP_ FLAG	0	RC	PMID2VOUT_OVP_FLAG Bit 0 = Normal (default) 1 = PMID2VOUT_OVP status changed	N/A
D[1]	CONV_OCP_FLAG	0	RC	CONV_OCP_FLAG Bit 0 = Normal (default) 1 = CONV_OCP_STAT changed	N/A
D[0]	CFL_RVS_OCP_FLAG	0	RC	CFL_RVS_OCP_FLAG Bit 0 = Normal (default) 1 = CFL_RVS_OCP_STAT changed	N/A

REG0x1D: MASK 1 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	BATOVP_MASK	0	R/W	Mask VBAT OVP Fault Interrupt 0 = VBAT OVP fault interrupt can work (default) 1 = Mask VBAT OVP fault interrupt. VBAT_OVP_FLAG bit is set after the fault, but the interrupt signal is not generated.	REG_RST
D[6]	BATOVP_ALM_MASK	0	R/W	Mask VBAT OVP Alarm Interrupt 0 = VBAT OVP alarm interrupt can work (default) 1 = Mask VBAT OVP alarm interrupt. VBATOVP_ALM_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST
D[5]	VOUTOVP_MASK	0	R/W	Mask VOUT OVP Fault Interrupt 0 = VOUT OVP fault interrupt can work (default) 1 = Mask VOUT OVP fault interrupt. VOUT_OVP_FLAG bit is set after the fault, but the interrupt signal is not generated.	REG_RST
D[4]	BATOCP_MASK	0	R/W	Mask IBAT OCP Fault Interrupt 0 = IBAT OCP fault interrupt can work (default) 1 = Mask IBAT OCP fault interrupt. IBAT_OCP_FLAG bit is set after the fault, but the interrupt signal is not generated.	REG_RST
D[3]	BATOCP_ALM_MASK	0	R/W	Mask IBAT OCP Alarm Interrupt 0 = IBAT OCP alarm interrupt can work (default) 1 = Mask IBAT OCP alarm interrupt. IBATOCP_ALM_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST
D[2]	BATUCP_ALM_MASK	0	R/W	Mask BATUCP Alarm Interrupt 0 = IBAT UCP alarm interrupt can work (default) 1 = Mask IBAT UCP alarm interrupt. IBATUCP_ALM_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST
D[1]	BUSOVP_MASK	0	R/W	Mask VBUS OVP Fault Interrupt 0 = VBUS OVP fault interrupt can work (default) 1 = Mask VBUS OVP fault interrupt. VBUS_OVP_FLAG bit is set after the fault, but the interrupt signal is not generated.	REG_RST
D[0]	BUSOVP_ALM_MASK	0	R/W	Mask VBUS OVP Alarm Interrupt 0 = VBUS OVP alarm interrupt can work (default) 1 = Mask VBUS OVP alarm interrupt. VBUSOVP_ALM_FLAG bit is set after the event, but the interrupt signal is not generated.	REG_RST

REG0x1E: MASK 2 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	BUSOCP_MASK	0	R/W	Mask IBUS OCP Fault Interrupt 0 = IBUS OCP fault interrupt can work (default) 1 = Mask IBUS OCP fault interrupt. IBUS_OCP_FLAG bit is set after the fault, but the interrupt signal is not generated.	REG_RST
D[6]	BUSOCP_ALM_MASK	0	R/W	Mask IBUS OCP Alarm Interrupt 0 = IBUS OCP alarm interrupt can work (default) 1 = Mask IBUS OCP alarm interrupt. IBUS_OCP_ALM FLAG bit is set after the fault, but the interrupt signal is not generated.	REG_RST
D[5]	BUSUCP_MASK	0	R/W	Mask IBUS UCP Fault Interrupt 0 = IBUS UCP fault interrupt can work (default) 1 = Mask IBUS UCP fault interrupt. IBUS_UCP_FLAG bit is set after the fault, but the interrupt signal is not generated.	REG_RST
D[4]	Reserved	0	R	Reserved	N/A
D[3]	BUSSCP_MASK	0	R/W	Mask VBUS SCP Fault Interrupt 0 = VBUS SCP fault interrupt can work (default) 1 = Mask VBUS SCP fault interrupt. VBUS_SCP_FLAG bit is set after the fault, but the interrupt signal is not generated.	REG_RST
D[2]	CFLY_SHORT_MASK	0	R/W	Mask CFLY Short Fault Interrupt 0 = CFLY short fault interrupt can work (default) 1 = Mask CFLY short fault interrupt. CFLY_SHORT_FLAG bit is set after the fault, but the interrupt signal is not generated.	REG_RST
D[1:0]	Reserved	00	R/W	Reserved	N/A

REG0x1F: MASK 3 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	VAC10VP_MASK	0	R/W	Mask VAC1 OVP Fault Interrupt 0 = VAC1 OVP fault interrupt can work (default) 1 = Mask VAC1 OVP fault interrupt.	REG_RST
D[6]	VAC2OVP_MASK	0	R/W	Mask VAC2 OVP Fault Interrupt 0 = VAC2 OVP fault interrupt can work (default) 1 = Mask VAC2 OVP fault interrupt.	REG_RST
D[5]	VOUTPRESENT_MASK	0	R/W	Mask VOUT Present Event Interrupt 0 = VOUT present event interrupt can work (default) 1 = Mask VOUT present event interrupt.	REG_RST
D[4]	VAC1PRESENT_MASK	0	R/W	Mask VAC1 Present Event Interrupt 0 = VAC1 present event interrupt can work (default) 1 = Mask VAC1 present event interrupt.	REG_RST
D[3]	VAC2PRESENT_MASK	0	R/W	Mask VAC2 Present Event Interrupt 0 = VAC2 present event interrupt can work (default) 1 = Mask VAC2 present event interrupt.	REG_RST
D[2]	VBUSPRESENT_MASK	0	R/W	Mask VBUS Present Event Interrupt 0 = VBUS present event interrupt can work (default) 1 = Mask VBUS present event interrupt.	REG_RST
D[1]	ACRB1_CONFIG_MASK	0	R/W	Mask ACFET1-RBFET1 Configuration Status Change Event Interrupt 0 = ACRB1_CONFIG status bit change event interrupt can work (default) 1 = Mask ACRB1_CONFIG status bit change event interrupt. ACRB1_ CONFIG_FLAG is set after the event, but the interrupt signal is not generated.	REG_RST
D[0]	ACRB2_CONFIG_MASK	0	R/W	Mask ACFET2-RBFET2 Configuration Status Change Event Interrupt 0 = ACRB2_CONFIG status bit change event interrupt can work (default) 1 = Mask ACRB2_CONFIG status bit change event interrupt. ACRB2_ CONFIG_FLAG is set after the event, but the interrupt signal is not generated.	REG_RST

REG0x20: MASK 4 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	ADC_DONE_MASK	0	R/W	ADC_DONE Mask 0 = ADC_DONE flag produce nINT (default) 1 = ADC_DONE flag does not produce nINT	REG_RST
D[6]	SS_TIMEOUT_MASK	0	R/W	SS_TIMEOUT Mask 0 = SS_TIMEOUT flag produce nINT (default) 1 = SS_TIMEOUT flag does not produce nINT	REG_RST
D[5]	TSBUS_TSBAT_ ALM_MASK	0	R/W	TSBUS_TSBAT_ALM Mask 0 = TSBUS_TSBAT_ALM flag produce nINT (default) 1 = TSBUS_TSBAT_ALM flag does not produce nINT	REG_RST
D[4]	TSBUS_FLT_MASK	0	R/W	TSBUS_FLT Mask 0 = TSBUS_FLT flag produce nINT (default) 1 = TSBUS_FLT flag does not produce nINT	REG_RST
D[3]	TSBAT_FLT_MASK	0	R/W	TSBAT_FLT Mask 0 = TSBAT_FLT flag produce nINT (default) 1 = TSBAT_FLT flag does not produce nINT	REG_RST
D[2]	TDIE_OTP_MASK	0	R/W	TDIE_OTP Mask 0 = TDIE_OTP flag produce nINT (default) 1 = TDIE_OTP flag does not produce nINT	REG_RST
D[1]	TDIEOTP_ALM_MASK	0	R/W	TDIEOTP_ALM Mask 0 = TDIEOTP_ALM flag produce nINT (default) 1 = TDIEOTP_ALM flag does not produce nINT	REG_RST
D[0]	WDT_MASK	0	R/W	Watchdog Mask 0 = Watchdog timeout flag produce nINT (default) 1 = Watchdog timeout flag does not produce nINT	REG_RST

REG0x21: MASK 5 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	REGN_GOOD_MASK	0	R/W	REGN_GOOD Mask 0 = REGN_GOOD flag produce nINT (default) 1 = REGN_GOOD flag does not produce nINT	REG_RST
D[6]	CONV_ACTIVE_MASK	0	R/W	CONV_ACTIVE Mask 0 = CONV_ACTIVE flag produce nINT (default) 1 = CONV_ACTIVE flag does not produce nINT	REG_RST
D[5]	VBUS_ERRLO_MASK	0	R/W	VBUS_ERRLO Mask 0 = VBUS_ERRLO flag produce nINT (default) 1 = VBUS_ERRLO flag does not produce nINT	REG_RST
D[4]	VBUS_ERRHI_MASK	0	R/W	VBUS_ERRHI mMask 0 = VBUS_ERRHI flag produce nINT (default) 1 = VBUS_ERRHI flag does not produce nINT	REG_RST
D[3]	PMID2VOUTOVP_ MASK	0	R/W	PMID2VOUTOVP_MASK 0 = PMID2VOUTOVP flag produce nINT(default) 1 = PMID2VOUTOVP flag does not produce nINT	REG_RST
D[2]	PMID2VOUTUVP_ MASK	0	R/W	PMID2VOUTUVP_MASK 0 = PMID2VOUTUVP flag produce nINT(default) 1 = PMID2VOUTUVP flag does not produce nINT	REG_RST
D[1]	CONV_OCP_MASK	0	R/W	CONV_OCP_MASK 0 = CONV_OCP flag produce nINT(default) 1 = CONV_OCP flag does not produce nINT	REG_RST
D[0]	CFL_RVS_OCP_MASK	0	R/W	CFL_RVS_OCP_MASK 0 = CFL_RVS_OCP flag produce nINT(default) 1 = CFL_RVS_OCP flag does not produce nINT	REG_RST

REG0x22: DEVICE_INFO Register [reset = 0x11]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:4]	DEVICE_REV[3:0]	0001	R	Device Revision Default: 0001	N/A
D[3:0]	DEVICE_ID[3:0]	0001	R	Device ID Default: 0001	N/A

REG0x23: ADC_CONTROL 1 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	ADC_EN	0	R/W	ADC Conversion Enable 0 = Disabled (default) 1 = Enabled Note: In 1-shot mode when the selected channel conversions are	REG_RST or Watchdog
				completed, the ADC_EN bit is automatically reset to 0.	
D[6]	ADC_RATE	0	R/W	ADC Conversion Mode Control 0 = Continuous conversion (default) 1 = 1-shot	REG_RST
D[5]	ADC_AVG	0	R/W	ADC Average Enable Bit 0 = Single value (default) 1 = Running average	REG_RST
D[4]	ADC_AVG_INIT	0	R/W	ADC Average Initial Value Setting Bit 0 = Start average using the existing register value (default) 1 = Start average using a new conversion	REG_RST
D[3:2]	ADC_SAMPLE[1:0]	00	R/W	Sample Speed 00 = 15 bit (default) 01 = 14 bit 10 = 13 bit 11 = 11 bit	REG_RST
D[1]	IBUS_ADC_DIS	0	R/W	IBUS ADC Control 0 = Enable conversion (default) 1 = Disable conversion	REG_RST
D[0]	VBUS_ADC_DIS	0	R/W	VBUS ADC Control 0 = Enable conversion (default) 1 = Disable conversion	REG_RST

REG0x24: ADC_CONTROL 2 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	VAC1 ADC DIS	0	R/W	VAC1 ADC Control 0 = Enable conversion (default)	REG RST
0[7]		0	1.7, 4.4	1 = Disable conversion	
DIO		0		VAC2 ADC Control	
D[6]	VAC2_ADC_DIS	0	R/W	0 = Enable conversion (default) 1 = Disable conversion	REG_RST
				VOUT ADC Control	
D[5]	VOUT_ADC_DIS	0	R/W	0 = Enable conversion (default)	REG_RST
		-		1 = Disable conversion	
D[4]	VBAT ADC DIS	0	R/W	VBAT ADC Control 0 = Enable conversion (default)	REG RST
ניין		Ũ	1000	1 = Disable conversion	
				IBAT ADC Control	
D[3]	IBAT_ADC_DIS	0	R/W	0 = Enable conversion (default)	REG_RST
				1 = Disable conversion	
וניוס		0	R/W	TSBUS ADC Control 0 = Enable conversion (default)	
D[2]	TSBUS_ADC_DIS	0	FK/ V V	1 = Disable conversion	REG_RST
				TSBAT ADC Control	
D[1]	TSBAT_ADC_DIS	0	R/W	0 = Enable conversion (default)	REG_RST
				1 = Disable conversion	_
DIO			D 444	TDIE ADC Control	DEO DOT
D[0]	TDIE_ADC_DIS	0	R/W	0 = Enable (default) 1 = Disable	REG_RST

REG0x25: IBUS_ADC1 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:0]	IBUS_ADC[15:8]	00000000	R	High Byte of the 16-bit ADC IBUS Data (resolution: 1mA, range: 0mA – 7000mA) MSB<7:0>: 32768mA, 16384mA, 8192mA, 4096mA, 2048mA, 1024mA, 512mA, 256mA	N/A

REG0x26: IBUS_ADC0 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:0]	IBUS_ADC[7:0]	00000000	R	Low Byte of the 16-bit ADC IBUS Data (resolution: 1mA, range: 0mA – 7000mA) LSB<7:0>: 128mA, 64mA, 32mA, 16mA, 8mA, 4mA, 2mA, 1mA	N/A

REG0x27: VBUS_ADC1 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:0]	VBUS_ADC[15:8]	00000000	R	High Byte of the 16-bit ADC VBUS Data (resolution: 1mV, range: 0V – 16.39V) MSB<7:0>: 32768mV, 16384mV, 8192mV, 4096mV, 2048mV, 1024mV, 512mV, 256mV	N/A

REG0x28: VBUS_ADC0 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:0]	VBUS_ADC[7:0]	00000000	R	Low Byte of the 16-bit ADC VBUS Data (resolution: 1mV, range: 0V – 16.39V) LSB<7:0>: 128mV, 64mV, 32mV, 16mV, 8mV, 4mV, 2mV, 1mV	N/A

REGISTER MAPS (continued)

REG0x29: VAC1_ADC1 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:0]	VAC1_ADC[15:8]	00000000	R	High Byte of the 16-bit ADC VAC1 Data (resolution: 1mV, range: 0V – 14V) MSB<7:0>: 32768mV, 16384mV, 8192mV, 4096mV, 2048mV, 1024mV, 512mV, 256mV	N/A

REG0x2A: VAC1_ADC0 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:0]	VAC1_ADC[7:0]	00000000	R	Low Byte of the 16-bit ADC VAC1 Data (resolution: 1mV, range: 0V – 14V) LSB<7:0>: 128mV, 64mV, 32mV, 16mV, 8mV, 4mV, 2mV, 1mV	N/A

REG0x2B: VAC2_ADC1 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:0]	VAC2_ADC[15:8]	00000000	R	High Byte of the 16-bit ADC VAC2 Data (resolution: 1mV, range: 0V – 14V) MSB<7:0>: 32768mV, 16384mV, 8192mV, 4096mV, 2048mV, 1024mV, 512mV, 256mV	N/A

REG0x2C: VAC2_ADC0 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:0]	VAC2_ADC[7:0]	00000000	R	Low Byte of the 16-bit ADC VAC2 Data (resolution: 1mV, range: 0V – 14V) LSB<7:0>: 128mV, 64mV, 32mV, 16mV, 8mV, 4mV, 2mV, 1mV	N/A

REG0x2D: VOUT_ADC1 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:0]	VOUT_ADC[15:8]	00000000	R	High Byte of the 16-bit ADC VOUT Data (resolution: 1mV, range: 0V – 6V) MSB<7:0>: 32768mV, 16384mV, 8192mV, 4096mV, 2048mV, 1024mV, 512mV, 256mV	N/A

REG0x2E: VOUT_ADC0 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:0]	VOUT_ADC[7:0]	00000000	R	Low Byte of the 16-bit ADC VOUT Data (resolution: 1mV, range: 0V – 6V) LSB<7:0>: 128mV, 64mV, 32mV, 16mV, 8mV, 4mV, 2mV, 1mV	N/A

REG0x2F: VBAT_ADC1 Register [reset = 0x00]

BIT	S	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:	:0]	VBAT_ADC[15:8]	00000000	R	High Byte of the 16-bit ADC VBAT Data (resolution: 1mV, range: 0V – 6V) MSB<7:0>: 32768mV, 16384mV, 8192mV, 4096mV, 2048mV, 1024mV, 512mV, 256mV	N/A

REGISTER MAPS (continued)

REG0x30: VBAT_ADC0 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:0]	VBAT_ADC[7:0]	00000000	R	Low Byte of the 16-bit ADC VBAT Data (resolution: 1mV, range: 0V – 6V) LSB<7:0>: 128mV, 64mV, 32mV, 16mV, 8mV, 4mV, 2mV, 1mV	N/A

REG0x31: IBAT_ADC1 Register [reset = 0x00]

BIT	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:	BAT_ADC[15:8]	00000000	R	High Byte of the 16-bit ADC IBAT Data (resolution: 1mA, range: 0A – 12A) MSB<7:0>: 32768mA, 16384mA, 8192mA, 4096mA, 2048mA, 1024mA, 512mA, 256mA	N/A

REG0x32: IBAT_ADC0 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:0]	IBAT_ADC[7:0]	00000000	R	Low Byte of the 16-bit ADC IBAT Data (resolution: 1mA, range: 0A – 12A) LSB<7:0>: 128mA, 64mA, 32mA, 16mA, 8mA, 4mA, 2mA, 1mA	N/A

REG0x33: TSBUS_ADC1 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:2]	Reserved	000000	R	Reserved	N/A
D[1:0]	TSBUS_ADC[9:8]	00	R	Higher 2 bits of the 10-bit ADC TSBUS Data (resolution: 0.09766%, range: 0% – 50%) MSB<2:0>: 50.00192%, 25.00096% Range: 0% – 50%	N/A

REG0x34: TSBUS_ADC0 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:0]	TSBUS_ADC[7:0]	00000000		Low Byte of the 10-bit ADC TSBUS Data (resolution: 0.09766%, range: 0% – 50%) LSB<2:0>: 12.50048%, 6.25024%, 3.12512%, 1.56256%, 0.78128%, 0.39064%, 0.19532%, 0.09766%	N/A

REG0x35: TSBAT_ADC1 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:2]	Reserved	000000	R	Reserved	N/A
D[1:0]	TSBAT_ADC[9:8]	00	R	Higher 2 bits of the 10-bit ADC TSBAT Data (resolution: 0.09766%, range: 0% – 50%) MSB<2:0>: 50.00192%, 25.00096% Range: 0% – 50%	N/A

REG0x36: TSBAT_ADC0 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:0]	TSBAT_ADC[7:0]	00000000	R	Low Byte of the 10-bit ADC TSBAT Data (resolution: 0.09766%, range: 0% – 50%) LSB<2:0>: 12.50048%, 6.25024%, 3.12512%, 1.56256%, 0.78128%, 0.39064%, 0.19532%, 0.09766%	N/A

REGISTER MAPS (continued)

REG0x37: TDIE_ADC1 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7]	TDIE_ADC_POL	0	R	Polarity of the 16-bit ADC TDIE Data 0 = Positive	N/A
D[6:0]	TDIE_ADC[14:8]	0000000	R	1 = Negative Higher 7 bits of the 16-bit ADC TDIE Data (resolution: 0.5°C, range: -40°C – 150°C) MSB<7:0>: 8192°C, 4096°C, 2048°C, 1024°C, 512°C, 256°C, 128°C	N/A

REG0x38: TDIE_ADC0 Register [reset = 0x00]

BITS	BIT NAME	DEFAULT	TYPE	DESCRIPTION	RESET BY
D[7:0]	TDIE_ADC[7:0]	00000000	R	Low Byte of the 16-bit ADC TDIE Data (resolution: 0.5°C, range: -40°C - 150°C) LSB<7:0>: 64°C, 32°C, 16°C, 8°C, 4°C, 2°C, 1°C, 0.5°C	N/A

APPLICATION INFORMATION

Input Capacitors (C_{VAC1}, C_{VAC2}, C_{VBUS} and C_{PMID})

Input capacitors are selected by considering two main factors:

1. Adequate voltage margin above maximum surge voltage.

2. Not too large voltage margin in order to limit the peak currents drawn from the source and reduce the input noise.

For C_{VAC1} , C_{VAC2} and C_{VBUS} , use low ESR bypass ceramic capacitors to place close to the VAC1/VAC2/VBUS and GND pins respectively. The C_{PMID} are determined by the minimum capacitance needed for stable operation and the required ESR to minimize the voltage ripple and load step transients. Typically, a 4.7µF or larger X5R ceramic capacitors are sufficient to meet the C_{PMID} requirements of two channels. Consider the DC bias derating of the ceramic capacitors. The X5R and X7R capacitors are relatively stable against DC bias and high temperature. Note that the bias effect is more severe with smaller package sizes, so choose the largest affordable package size. Also consider a large margin for the voltage rating for the worst-case transient input voltages.

External OVPFETs (ACFET1-RBFET1 and ACFET2-RBFET2)

The maximum recommended input range is 12V. If the supplied VAC1 or VAC2 voltage is above 12V, two sets of back-to-back N-channel OVPFETs are recommended between the adapter inputs and the SGM41606S. Choose a low R_{DSON} MOSFET for the OVPFET to minimize power losses.

Flying Capacitors (C_{FLY})

For selection of the C_{FLY} capacitors, the current rating, ESR and the bias voltage derating are critical parameters. The C_{FLY} capacitors are biased to different DC voltages according to the operation mode. To trade-off between efficiency and power density, set the C_{FLY} voltage ripple to the 2% of the V_{VOUT} as a good starting point. The C_{FLY} for each phase can be calculated by Equation 10:

$$C_{FLY} = \frac{I_{BAT}}{4f_{SW}V_{CFLY_RPP}} = \frac{I_{BAT}}{8\% f_{SW}V_{DC_CFLY}}$$
(10)

where I_{BAT} is the charging current and V_{CFLY_RPP} is the peak-to-peak voltage ripple of the C_{FLY} .

Choosing a too small capacitor for C_{FLY} results in lower efficiency and high output voltage/current ripples. However choosing a too large C_{FLY} only provides minor efficiency and output ripple improvements.

The default switching frequency is f_{SW} = 500kHz. It can be adjusted by FSW_SET[2:0] bits in REG0x10. Lower frequency increases efficiency by reducing switching losses but requires larger capacitance to maintain low output ripple and low output impedance (R_{EFF}). An optimum switching frequency can be found for any selected C_{FLY} capacitor to minimize losses.

Output Capacitor (C_{VOUT})

 C_{VOUT} selection criteria are similar to the C_{FLY} capacitor. Larger C_{VOUT} value results in less output voltage ripple, but due to the dual-phase operation, the C_{VOUT} RMS current is much smaller than C_{FLY} , so smaller capacitance value can be chosen for C_{VOUT} as given in Equation 11:

$$C_{\text{VOUT}} = \frac{I_{\text{BAT}} \times t_{\text{DEAD}}}{0.5 \times V_{\text{VOUT_RPP}}}$$
(11)

where t_{DEAD} is the dead time between the two phases and V_{VOUT_RPP} is the peak-to-peak output voltage ripple and is typically set to the 2% of V_{VOUT} .

 C_{VOUT} is biased to the battery voltage and its nominal value should be derated for battery voltage DC bias. Typically a 22µF, X5R or better grade ceramic capacitors placed close to the VOUT and GND pins provide stable performance of two channels.

APPLICATION INFORMATION (continued)

PCB Layout Guidelines

A good PCB layout is critical for stable operation of the SGM41606S. Follow these guidelines for the best results:

- 1. Use short and wide traces for VBUS as it carries high current.
- 2. Minimize connectors wherever possible. Connector losses are significant especially at high currents.
- 3. Use solid thermal vias for better thermal relief.
- 4. Bypass VBUS, PMID and VOUT pins to GND with ceramic capacitors as close to the device pins as possible.
- 5. Place C_{FLY} capacitors as close as possible to the device with small pad areas to reduce switching noise and EMI.
- 6. CLFY pours of the two channels should be as symmetrical as possible.
- 7. Connect and reference all power signals to the GND pins (preferably the nearest ones).
- 8. Try not to interrupt or break the power planes by signal traces.

TYPICAL APPLICATION CIRCUIT

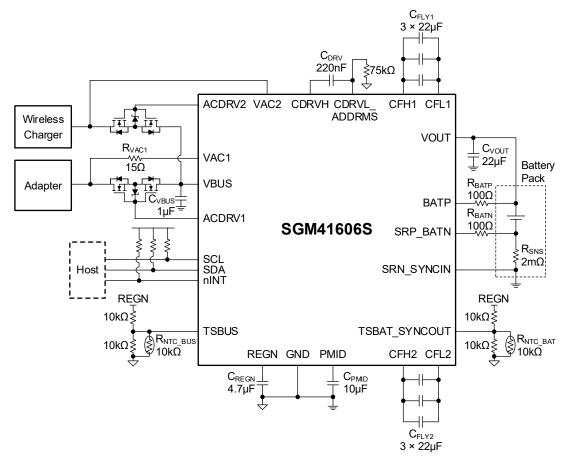
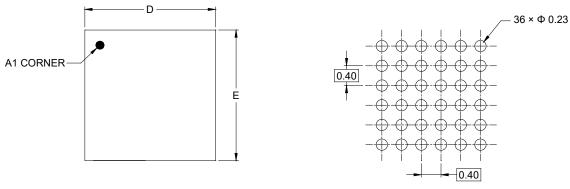
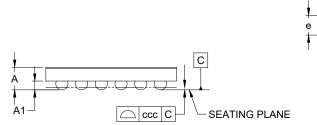
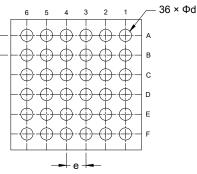


Figure 16. Typical Application Circuit of SGM41606S


REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Original (NOVEMBER 2024) to REV.A	Page
Changed from product preview to production data	All



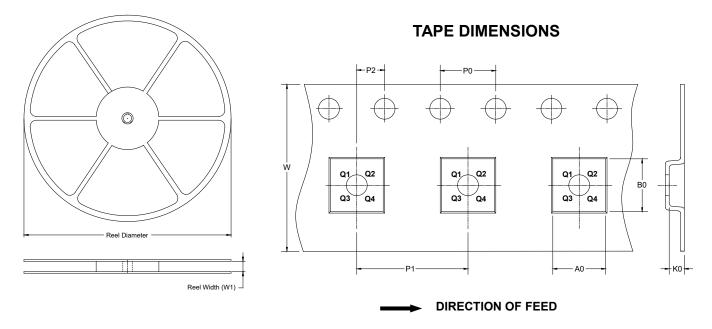
PACKAGE OUTLINE DIMENSIONS WLCSP-2.65×2.65-36B-A

RECOMMENDED LAND PATTERN (Unit: mm)

SIDE VIEW

TOP VIEW

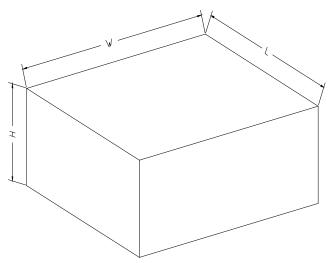
BOTTOM VIEW


Symbol	Dimensions In Millimeters						
Symbol	MIN	MOD	MAX				
A	-	-	0.500				
A1	0.151	-	0.205				
D	2.620	-	2.680				
E	2.620	-	2.680				
d	0.217	-	0.277				
е	0.400 BSC						
ccc		0.050					

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS


NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
WLCSP-2.65×2.65-36B-A	7"	9.5	2.75	2.75	0.81	4.0	4.0	2.0	8.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	DD0002

